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ABSTRACT
As an important combination of behaviour and pattern in animals to resemble benign objects, biolog ical 
mimesis can effectively avoid the detection of their prey and predators. It at least dates back to the Permian 
in fossil records. The recognition of mimesis within fossil, however, might be subjective and lack quantitative 
analysis being only based on few fossils with limited information. To compensate for this omission, we 
propose a new method using a Siamese network to measure the dissimilarity between hypothetical mimics 
and their models from images. It generates dissimilarity values between paired images of organisms by 
extracting feature vectors and calculating Euclidean distances. Additionally, the idea of ‘transfer learning’ is 
adopted to fine-tune the Siamese network, to overcome the limitations of available fossil image pairs. We 
use the processed Totally-Looks-Like, a large similar image data set, to pretrain the Siamese network and 
fine-tune it with a collected mimetic-image data set. Based on our results, we propose two recommended 
image dissimilarity thresholds for judging the mimicry of extant insects (0–0.4556) and fossil insects (0– 
0.4717). Deep learning algorithms are used to quantify the mimicry of fossil insects in this study, providing 
novel insights into exploring the early evolution of mimicry.
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Introduction

Animals have evolved various strategies to gain advantages among 
predator–prey interactions, of which mimesis is an effective way to 
facilitate stealth and survival (Wickler 1968). As a very sophisti
cated coevolutionary development in animals, mimesis is capable of 
concealing themselves by mimicking aspects of their surroundings. 
This adaptation is rather common among insects, the most diverse 
group of animals on Earth. They usually resemble other objects, 
especially plants, in their habitats by evolving several different 
specialised morphologies, e.g. katydids (Tettigonidae) and leaf 
insects (Phasmatodea) usually mimic leaves with their leaf-like 
wings or extended tergites (Mugleston et al. 2016), and stick insects 
(Phasmatodea) normally mimic sticks with their slender abdomen 
(Foottit and Adler 2009). The plant mimicry indicates the complex 
associations among insects and plants. Thereby, exploring the ori
ginal and early evolution of mimesis can provide more information 
about the coevolution between plants and insects, and reveal more 
information about the palaeoecology and palaeoclimate. However, 
the original and evolution of plant-mimesis are little known due to 
the limitation of fossil data and the incompleteness of fossil pre
servation. Though fossils have been reported with mimetic features 
from the Mesozoic (Heads 2008; Wang et al. 2012; Liu et al. 2018; 
Fang et al. 2020; Yang et al. 2021), these mimicry relationships have 
been determined without any mathematical analysis. Here, we try 
to measure mimicry in fossils using deep learning.

Actually, there are already some applications of artificial intelli
gence in biological mimicry and other fields (Li et al. 2019b). Wham 
et al. (2019) used a pretrained deep convolutional neural network 
(DCNN) (Krizhevsky et al. 2017) to quantify the perceptual simi
larity between bumblebee colour patterns. This neural network, 
usually for large-scale image recognition, is trained on 1.2 million 

images to learn visual features including edges, textures and col
ours. It transforms the images into digital vector representations, 
and generates a perceptual distance metric according to the distance 
between these vectors. Compared with other pixel-based quantita
tive methods (Williams 2007), a data-abundant and trustworthy 
metric is proposed to quantify mimicry dynamics in this method, 
and it is less sensitive to subtle changes in the pattern location. 
Inspired by Wham et al. (2019), Ezray et al. (2019) calculated 
perceptual distances between each pair of bumblebee colour pattern 
graphs. Moreover, they implemented t-distributed stochastic neigh
bour embedding (t-SNE) (Van der Maaten and Hinton 2008) to 
visualise the distances. The t-SNE can visualise a high dimensional 
distance in two-dimension plots. By analysing many geographic 
distribution data of social bumblebee colour patterns across the 
United States, they revealed that there is a mimicry complex accom
panied by a perceptual continuum in bumblebees. A novel method 
was used to quantify the fidelity of the bumblebee colour patterns, 
which provided more possibilities for quantification tasks in the 
mimicry. Cuthill et al. (2019) used a convolutional triplet neural 
network (Hoffer and Ailon 2015) to quantify the total visible phe
notypic similarity between ventral and dorsal of 38 neotropical 
butterfly subspecies (Heliconius erato and Heliconius melpomene). 
In the training process, three images were used to make up a triplet, 
two of which are from the same subspecies and the other from 
different subspecies. When calculating Euclidean distances, the net
work made those images from the same subspecies closer, and those 
from different subspecies further away. Prior to this, the testing of 
evolutionary hypotheses was subjective. This work demonstrated 
that a phenotypic spatial embedding can be generated by deep 
learning, and quantitatively verified a crucial prediction of 
Müllerian mimicry (Müller 1879). De Solan et al. (2020) used 
deep learning to quantify the snake’s Batesian mimicry behaviour 
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(Bates 1863) whose actual frequency has remained largely 
unknown. They trained a DCNN to identify different venomous 
species plus a ‘foreign’ class in the Western Palearctic. When train
ing the network, they used ‘transfer learning’ in which a pretrained 
Xception network based on ImageNet (Deng et al. 2009) was fine- 
tuned on the collected snake images. Then the DCNN was used to 
classify non-venomous snake images into venomous or ‘foreign’ 
species.

Currently, much of the researches are focused on studying 
mimicry behaviours of extant creatures by artificial intelligence. 
However, no corresponding research has been commenced on the 
measurement and analysis of mimicry among fossils, though the 
oldest fossil record of plant mimicry dates back to the Permian 
(Garrouste et al. 2016) by visual inspection. Our study explores 
a new method that using a Siamese network to measure the dissim
ilarity between hypothetical mimics and their models from images.1 

Siamese network consists of two sub-networks with outputs con
nected together. During its training, the feature vectors of the two 
inputs are extracted by sub-networks, and distance between them is 
calculated by a final fully connected layer. A discriminative loss 
function is minimised in the training process, which makes the 
distance smaller for the image pair of the same class but bigger 
for that of different classes.

Additionally, to overcome the limitations of available fossil 
image pairs, we adopt the idea of ‘transfer learning’. The network 
is pretrained on the processed Totally-Looks-Like (TLL) (Rosenfeld 
et al. 2018) dataset and fine-tuned on part of the Living-Insect- 
Mimicry-Dataset (LIMD). We test it on extant insects and fossil 
insects respectively, and obtain two corresponding thresholds of 
dissimilarity values for their mimicry judgements. We quantify 
mimicry relationship among fossils in this study and recommend 
a dissimilarity value threshold (Fossil-threshold) which can be used 
to assist future studies.

Data and method

Data

For pretraining the network, we use the processed Totally-Looks- 
Like (TLL) as the pretraining data set. TLL is a data set with 6,016 
image pairs which are considered very similar by naked eyes, but 
usually have low similarity in low-level features. The image pairs 
include various kinds of objects, scenes, patterns, animals, and 

human faces. All images are in three image styles: sketches, cartoons 
and natural images, providing sufficient diversity and complexity 
for humans. Similar image pairs, with the same corresponding 
numbers are placed in left and right folders, respectively. Some 
examples of TLL in different categories are in Figure 1.

Actually, we refine the TLL as a pretraining data set, not all the 
image pairs in TLL being used. The face image pairs in TLL were 
eliminated, in which the similarity is mainly determined by the 
features of the eyes, nose and mouth. Its variable positions include 
head pose, occlusion, lighting conditions and facial expressions 
(Trigueros et al. 2018). However, mimicry in insects is closely 
related to morphology such as shapes (Mugleston et al. 2016). 
There are great differences in the two situations. Therefore, to 
make the network accurately extract the characteristics in images 
of insects and their plant model better, the face images were 
removed manually from the TLL data set. Finally, 1836 non-face 
image pairs, mainly including various styles of objects, animals, etc., 
were retained.

For fine-tuning the network, we introduce a new data set, called 
Living-Insect-Mimicry-Data set (LIMD) based on the iNaturalist 
(Ueda 2020), one of the world’s largest communities dedicated to 
exploring biodiversity. LIMD consists of photographs of extant 
insects and their model mimicry plants, including four common 
mimicry-involved insect genera: Uropyia Staudinger, 1892, 
(Valkonen et al. 2014), Doleschallia Felder & Felder, 1860 (Suzuki 
et al. 2014), Megaphasma Caudell, 1903 & Sipyloidea Brunner von 
Wattenwyl, 1893 (Carlberg 1981), Typophyllum Serville, 1838 
(Castner and Nickle 1995), and their model plants (Table 1). 
Megaphasma and Sipyloidea considered together because of their 
same familial attribution and mimicry. We give several classic 
insect mimicry illustrations in Figure 2 as examples. Among the 
2118 image pairs, 1453 image pairs were used for Siamese network 
fine-tuning and 665 image pairs for testing.

In addition to 665 image pairs of LIMD, we also gather a Fossil- 
Insect-Mimicry-Data set (FIMD) as another test data set with 57 
image pairs. The image pairs of fossil insects and their plant models 
are extracted from literatures. Three fossil mimic species are 
involved: Juracimbrophlebia ginkgofolia Wang et al. (2012), 
Phyllochrysa huangi Liu et al. (2018), and Lichenipolystoechotes 
angustimaculatus Fang et al. (2020) (Wang et al. 2012; Liu et al. 
2018; Fang et al. 2020) (Table 2). We give examples of the FIMD in 
Figure 2.

Figure 1. Some examples of image pairs in different categories in the TLL data set.
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Image pairs of LIMD and FIMD are cut out from their back
ground in Adobe Photoshop CC to avoid the influence of their 
surroundings and make the results more reliable before inputting. 
Additionally, parts of images are cut out to exclude the disturbance 
of internal irrelevant body parts and external irrelevant debris. 
Images of lichen thallus are reshaped to keep consistence with 

wings of Lichenipolystoechotes angustimaculatus (Figure 2(l)). 
Comprehensively, we undertake some unified processing on the 
whole data set. Firstly, all images are converted to greyscale using 
Pytorch to ignore the colour features. The original colourations of 
fossils usually absent due to the preservation and unable to be an 
element for calculating dissimilarity (MartInez-Delclos et al. 2004; 
Vinther 2015), so we mainly consider their morphologies, e.g. shape 
and texture features. Meanwhile, the colouration patterns are 
remained after converted to greyscale, which also provide informa
tion for fossil mimicry. Secondly, to avoid overfitting, some data 
augmentation operations are implemented to enhance data diver
sity. We use Pytorch’s built-in function (transforms) to perform 
a horizontal flip operation and random rotation of 15 degrees on 
images of the processed TLL and part of LIMD (images for fine- 
tuning). By adding different angles and directions, the network can 
learn more comprehensive features. Finally, each image is resized to 

Table 1. Image pairs of Living-Insects-Mimicry-Data set (LIMD).

For fine-tuning For testing

Genus Insects Plants
Image 
pairs Insects Plants

Image 
pairs

Uropyia 14 29 406 9 18 162
Doleschallia 21 21 441 14 15 210
Megaphasma and 

Sipyloidea
24 13 312 17 9 153

Typophyllum 14 21 294 10 14 140

Figure 2. Image pairs of Living-Insects-Mimicry-Data set (LIMD), (a–h); and image pairs in Fossil-Insect-Mimicry-Data set (FIMD), i-n. (a, b) Lepidopteran genus Uropyia 
Staudinger, 1892 and its mimicry model plant. (c, d) Lepidopteran genus Doleschallia Felder & Felder, 1860 and its mimicry model plant. (e, f) Phasmatodean genus 
Megaphasma Caudell, 1903 and Sipyloidea Brunner von Wattenwyl, 1893 and its mimicry model plant. (g, h) Orthopteran genus Typophyllum Serville, 1838 and its mimicry 
model plant. Images of fossil insects and their mimicry model plants. (i, j) Neuropteran species Juracimbrophlebia ginkgofolia Wang et al. 2012 and its mimicry model plant. 
(k, l) Neuropteran species Lichenipolystoechotes angustimaculatus Fang et al. 2020 and its mimicry model plant. (m, n) Neuropteran species Phyllochrysa huangi Liu et al. 
2018 and its mimicry model plant.
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224 × 224 to fix the network input size and reduce the amount of 
calculation as well as the computer CPU load.

Transfer learning

Fine-tuning and transfer learning are crucial tools to solve the 
problem of insufficient training data in deep learning. In transfer 
learning (Yosinski et al. 2014; Agrawal et al. 2014), a CNN is firstly 
trained on a large data set for some general tasks and the trained 
network parameters are saved. After that, the network is transferred 
to another CNN model and trained on a smaller data set, which is 
usually domain-specific. Yin et al. (2017) studied the visualisation 
of CNN fine-tuning and transfer learning process. Their research 
reported a common phenomenon among the layers of many CNN 
models: the layer closer to the input data learns more common 
features, and learned features become specific with the raising of 
layers.

In this work, the constructed Siamese network is pretrained on 
the processed TLL data set and saved its network parameters. Then, 
the network is fine-tuned on the part of LIMD to obtain the 
similarity measurement model for our research. We test two differ
ent fine-tuning strategies: (1) fine-tuning the whole model; (2) 
training only the top new layer. We find that strategy (2) gets the 
best performance consistently in the most resource-efficient situa
tion. And some studies (Yosinski et al. 2014; Agrawal et al. 2014) 
show that fine-tuning the whole model with less data causes over- 
fitting easily. Therefore, similar to the traditional transfer learning 
process, there are two main steps. Firstly, a new top model2 is 
initialised with random weights and trained by inputting the 

features extracted from the pretrained CNN basic model. At this 
point, the filter of the convolutional layer is not updated. 
The second step is to combine the pretrained basic model with 
the top model and update the entire network weights during the 
training process.

Siamese network

We try to find a mapping function which maps the inputs to a low- 
dimensional target space. This is convenient to approximate the 
‘semantic’ distance in the original input space with simple distance. 
Additionally, the natural distance in low-dimensional target space 
is not affected by the input irrelevant distortion. Therefore, we 
could easily estimate each new category’s probability model from 
very few samples.

Herein, we use Siamese network, which is the most commonly 
used network in similarity measurement (Koch et al. 2015; 
Melekhov et al. 2016; Appalaraju and Chaoji 2017). Its process of 
calculating distance is shown in Figure 3. The reasons for choosing 
Siamese network in this work are as follows:

(1) The network takes sample pairs as input. The matching 
process of samples increases the size of data set, which 
makes it suitable for training on small data sets.

(2) The network weakens labels by only considering whether 
the sample pairs are similar or not. This enhances the 
extensibility of the network to deal with untrained 
categories.

(3) The contrastive loss function used in the network helps to 
process paired data. In this paper, the mimicry is simplified 
as is the relationship between insect-plant image pairs.

(4) In this network, two CNNs with shared parameters are used 
to extract image feature vectors. Compared with using com
plex networks such as ResNet (He et al. 2016) or GoogleNet 
(Szegedy et al. 2015) etc. alone, two basic three-layer CNNs 

Figure 3. The distance calculating of Siamese network. Mθ I1ð Þ and Mθ I2ð Þ are the low-dimensional embedding vectors got by projection; Loss is based on Euclidean 
distance of the embedding vector; when y = 1, I1 and I2 are similar image pair; when y = 0, I1 and I2 are dissimilar image pair. The specific structure of mapping process 
Mθ Ið Þ is shown in Figure 4.

Table 2. Image pairs of Fossil-Insect-Mimicry-Data set (FIMD).

Genus Insects Plants Image pairs

Juracimbrophlebia ginkgofolia 3 5 15
Phyllochrysa huangi 4 9 36
Lichenipolystoechotes angustimaculatus 2 3 6
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sharing parameters can greatly reduce the number of 
parameters.

In neural networks, the goal of learning is to find the parameter θ 
(Usually contains weight matrix W and bias vector b) which mini
mises the loss function. Following the previous work (Chopra et al. 
2005), the discriminative learning framework of the energy-based 
model (EBM) is used to derive the loss function. If we only consider 
minimising the energyEθ e1; e2ð Þ of the image pairs from the same 
category, when the mapping function f is a constant function, it may 
happen that the energy and loss of the input from the same category 
become 0 and the different category is very large. Therefore, 
a contrastive loss function can not only ensure that energies for 
pairs of inputs from different categories are high but also that 
energies for pairs from same category are small. In this paper, we 
fix a specific loss function on this basis (Hadsell et al. 2006). See 
Equation (1). 

L θð Þ ¼
1
2

1 � yð Þ D e1; e2ð Þf g
2
þ

1
2

y max 0;m � D e1; e3ð Þð Þf g
2 (1) 

where y is the label of the image pairs, e is the extracted feature 
vector or image embedding, and when they are similar e1; e2ð Þ, 
y = 0, the right-hand addition part disappears; the loss function 
then becomes the distance between two similar embedded images. 
When they are dissimilar e1; e3ð Þ, y = l, the left-hand addition part 
disappears; the loss function becomes the hinge loss. The idea of 
contrastive loss is also applied in generative adversarial network, 
which is a hot topic in data synthetics (Li et al. 2019a; Li et al. 2021). 
The m is the margin between similar and dissimilar images whose 
value is empirically decided. A larger m can push dissimilar and 
similar images further apart. In our work, we have used m = 2.

As shown in Figure 4, the inputs of this network are image pairs. 
They may be positive image pairs I1; I2ð Þ which are obtained 
through data augmentation or two different variations of the same 
category image. Or they may be negative image pairs I1; I3ð Þ which 

Figure 4. Specific architecture of mapping process for generating image embedding vectors based on Siamese network. The top is calculation method of the loss function.
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are from different categories. The two convolutional neural net
works are used to map I1, I2, I3 to the latent space to get the image 
embedding e1, e2, e3. The network is multilayered (M) and each 
layer has multiple neurons (n). For a given image, the specific 
process of mapping is as follows: Assuming that the input x of the 
projection function f is d-dimensional, the m-th hidden layer out
puts hm ¼ f wmxþ bmð Þ, where wm is the weight matrix of the m-th 
layer, and bm is the bias vector. Here, f is a non-linear activation 
function that projects a d-dimensional image to a p-dimensional 
subspace. In this p-dimensional subspace, the similar images are 
closer, and dissimilar images are further away.

Our model is implemented with Python 3.6 based on Pytorch 
as a Jupyter Notebook. A standard CNN architecture is applied 
and batch normalisation is used after each convolution layer. 
The network structure includes three convolutional layers with 
a convolution kernel size of five and three fully connected layers. 
Though the Siamese network is composed of two symmetrical 
shared parameter networks, their weights are restricted to be 
identical. Therefore, we use one network in the actual training 
process, referring to the previous work (Koch et al. 2015). This 
can greatly save memory without affecting the accuracy and 
other indicators. Specifically, two images are inputted to one 
model in succession. They are used for calculating the loss 
function value, which can be back-propagated to optimise the 
network. The loss function used in the training process is iden
tical to Equation (1), where D is defined as the Euclidean dis
tance of the network output e for two images. See Equation (2) 

D e1; e2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 � e2
p

(2) 

Since our network structure inputs an image pair, along with their 
labels (similar or dissimilar), the training data needs to be imported. 
The images are loaded by reading from folders, which is easy to 
generalise to any other data sets. To prevent the imbalance between 
similar image pairs and dissimilar image pairs in the imported data, 
we force 50% of the image pairs to come from the same category 
and the others from different categories. In other words, the ratio of 
positive and negative pairs is l in training.

When applying ‘transfer learning’, there are two steps: pretrain
ing and fine-tuning. During pretraining, the network trains 100 
epochs on the loaded training set, using Adam optimiser, whose 
learning rate is 0.001. The batch_size of pretraining is 64. After 
training, we draw a graph of the loss function decline curve of the 
training process and save the network parameters. When fine- 
tuning, the network parameters are imported firstly, with 30 epochs 
trained on the fine-tuning data set later. To lessen the damage to the 
saved basic network parameters, we reduce the learning rate to 
0.0005. The batch_size is 32 in fine-tuning.

Results and discussions

Quantification of extant insect mimesis

Extant insects in the Living-Insects-Mimicry-Data set (LIMD) are 
definite mimicry insects, and their mimicry behaviour is recognised 
in the biological community (Carlberg 1981; Castner and Nickle 
1995; Suzuki et al. 2014; Valkonen et al. 2014). Therefore, we use 
them as a test data set, to test the dissimilarity measurement of our 
model on mimicry behaviour.

We use 665 image pairs of the LIMD to test our model for the 
quantification of extant insect mimicry (Table 1). We calculate the 
dissimilarity values of all possible image pairs to measure the 
mimicry of each insect genus separately (Table 3). After that, all 
dissimilarity values of each insect genus are averaged to obtain four 
reference values for their mimicry judgement: Uropyia, 0.7953; 

Doleschallia, 0.5142; Typophyllum, 0.2481; Megaphasma and 
Sipyloidea, 0.3970. From a statistical point of view, the median 
can reflect the general situation of a set of numbers. To get 
a comprehensive similarity threshold for the mimicry judgements, 
the median of four average values is taken as the final threshold. 
Thus, our recommended threshold of dissimilarity value for extant 
insets (Extant-threshold) is 0–0.4556. It will also serve as a basis for 
determining the mimesis of fossil insects in the next part.

Additionally, to grasp potential mimicry relationship as more 
as possible, we also recommend a generalised threshold of dissim
ilarity value for extant insets, 0–1. In Table 3, to more intuitively 
reflect the distribution range of dissimilarity values within each 
insect genus, we make a segmented statistics. We take 0.5 as an 
interval and unified those higher (over 1 into an interval), and 
calculate numbers of dissimilar values in each interval. From the 
distribution of the dissimilarity value of each insect genus, over 
88% of them are less than 1 (Table 3). Within the four taxa, 
Uropyia, Doleschallia, Typophyllum, Megaphasma and Sipyloidea, 
about 65%, 90%, 100% and 98% of dissimilarity values are less 
than 1. Therefore, to generalise it to all organisms better, we 
propose that the biological image pairs with a dissimilarity value 
less than 1 can be further considered for mimicry. To prove the 
applicability of our recommend generalised threshold, we calcu
late the dissimilarity values between each insect genus and any 
other irrelevant plant. The dissimilarity values within mimicry 
image pairs are less than 1 (Figure 5(a)); however, dissimilarity 
values within irrelevant image pairs are greater than 1 (Figure 5 
(b)). The model can thus numerically distinguish similar or dis
similar image pairs by extracting the feature vectors and calculat
ing the distance between the vectors, thereby tentatively 
determining whether there is a mimicry relationship between the 
two imaged organisms.

Quantification of fossil insect mimesis

All image pairs from FIMD are fossil insects and their potential 
model plants, which are artificially identified with mimicry relation
ship based on palaeontologists’ experience (Wang et al. 2012; Liu 
et al. 2018; Fang et al. 2020). We quantify the mimicry relationship 
among fossils and recommend a dissimilarity value threshold 
(Fossil-threshold) that can be used to assist future studies.

First, we test all image pairs (57) of the FIMD by our model for 
the quantification of fossil insect mimicry (Table 2). We calculate the 
dissimilarity values of all image pairs to measure the mimicry of each 
insect species separately (Table 4). After that, the average dissim
ilarity values of each fossil insect species are calculated: 
Juracimbrophlebia ginkgofolia, 5936; Phyllochrysa huangi, 0.3684; 
Lichenipolystoechotes angustimaculatus, 0.4531. Taking account of 
the incompleteness of fossils, together with previous palaeontological 
research, all these fossil species can be considered as plant mimicry. 
The differences between each average dissimilarity value and the 
Extant-threshold are calculated as: Juracimbrophlebia ginkgofolia, 

Table 3. Test results of extant insects.

Genus

Segmented statistics

[0,0.5] [0.5,1] [1,+ ∞] Average value

Uropyia 59 50 53 0.7953
Doleschallia 111 79 20 0.5142
Megaphasma and Sipyloidea 103 48 2 0.3970
Typophyllum 123 17 0 0.2481
Median (Threshold) 0.4556

Segment statistics is to count the number of dissimilarity values corresponding to 
each interval.
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0.1380; Phyllochrysa huangi, −0.0872; and Lichenipolystoechotes 
angustimaculatus, −0.0025. Finally, we derive the final threshold 
for judging the mimicry of fossil insects (Fossil-threshold), 0– 
0.4717, by adding the average of above differences (0.0161) to 
Extant-threshold (0–0.4556). The detailed statistical analysis results 
are shown in Table 4. Figure 6 shows examples of the dissimilarity 
measurement results within mimicry fossils and irrelevant fossils.

Finally, all the experimental results are analysed quantitatively 
by box scatter plot (Figure 7). Box scatter plot can clearly reflect the 
discrete distribution of data and the outliers. There is no significant 

difference between the average dissimilarity of fossil insects and 
that of living insects. The data points of each insect are relatively 
concentrated, and there are almost no outliers.

Conclusion

In this study, we develop a symmetric CNN model-Siamese net
work for the quantification of extant and fossil insect mimicry. It 
achieves the consistency with the artificial judgement based on 
biological morphologies, both involving mimicry in extant and 
fossil insects. We draw the dissimilarity threshold for judging extant 
insect mimicry, 0–0.4556. Additionally, images of fossil insects are 
also tested and our CNN model-Siamese network concurs with 
previous researches. The recommended threshold for fossil insect 
mimicry is 0–0.4717, slightly higher than extant insects due to the 
incompleteness of fossils. However, our model still has certain 
errors and its generalisation is not good enough due to the limita
tion of data sets. As long as enough data are available, it should be 
possible to achieve a good model fine-tuning effect. Therefore, as 
data become available, we will enlarge the range of the calculated 
recommended threshold to minimise the omission of biological 
mimicry behaviour.

Figure 5. (a) Dissimilarity values between each insect (left) and its mimicked plant (right), whose dissimilarity values are about the average values. From left to right, from 
top to bottom, there are Uropyia, Doleschallia, Megaphasma and Sipyloidea, Typophyllum. (b) Dissimilarity values between Uropyia (left) and its mimicry plant and model 
plants (right).

Table 4. Test results of fossil insects.

Genus

Segmented statistics

[0,0.5] [0.5,1]
[1, + 

∞]
Average 

value Difference

Juracimbrophlebia ginkgofolia 7 5 3 0.5936 0.1380
Phyllochrysa huangi 25 10 1 0.3684 −0.0872
Lichenipolystoechotes 

angustimaculatus
4 1 1 0.4531 −0.0025

Average difference 0.0161
Threshold 0.4717

The difference is obtained by subtracting the dissimilarity threshold of extant 
insects from the average value of fossils.

HISTORICAL BIOLOGY 7



The definition of mimesis within fossils always relies on sub
jective judgements. Our model quantifies the mimesis among fossil 
insects and their model plants and calculates a tentative threshold 
for the judgement of mimicry of fossil insects. The threshold 
achieves the transformation from qualitative to quantitative 

judgment and provides a starter for future studies. Compared 
with biologists’ time-consuming and exhausting judgement of 
mimicry, our model can provide a preliminary judgement quickly 
and effectively to assist palaeontologists’ work, by measuring the 
mimicry similarity from suggestive images.

Figure 6. (a) Dissimilarity values between each fossil insect mimic (left) and its model plant (right), whose dissimilarity values are about the average values. From left to 
right, from top to bottom, the insects are Juracimbrophlebia ginkgofolia, Lichenipolystoechotes angustimaculatu, and Phyllochrysa huangi. (b) Dissimilarity values between 
Phyllochrysa huangi (left) and its model plant and irrelevant plants (right).

Figure 7. Box scatter plots of dissimilarity data display lower and upper extremes, lower and upper quartile, medians (black lines in the box) and averages (red dots) of 
dissimilarities of all the insects. (Black dots represent the dissimilarity values between insects and plants).
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Notes

1. Data and code are available on https://github.com/fanliaveline/Siamese- 
Network-Fossil-Mimicry.git

2. We refer to ‘basic model’ as a pretrained architecture normally; ‘top 
model’ as a similarity calculation network and fully connected layer; and 
`convolutional layer’ as the initial modules.
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