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ABSTRACT Heterogeneous graph representation learning is to learn effective representations for
nodes or (sub)graphs, which preserve node attributes and structural information. However, it is challenging
to design a representation learning method for heterogeneous information networks (HINs) due to their
diversity. Most of the existing HIN-oriented learning methods define a series of meta-paths. Then, they
aggregate the representations learned from different meta-paths in the same hidden space. These methods do
not consider semantic differences of different meta-paths, which leads to semantic confusion. And further
affects the effectiveness of the learned representation. Given these issues, we introduce a Semantic Aware
HIN Representation learning Network (SAHRN), which takes into account the semantics of different meta-
paths. We mitigate the problem of semantic confusion by projecting nodes’ features into different hidden
spaces separately according to different meta-paths. To further expand the scope of aggregation and enrich
the aggregated information, we also design various variants of our model by adding layer aggregation.
Extensive experiments on three standard HIN datasets show that SAHRN achieves consistent improvements
compared to state-of-the-art graph representation learning methods. The experiments and analyses on each
component of the model show the effectiveness of the proposed method. The source code is available on
https://github.com/pingpingand/SAHRN.

INDEX TERMS Data mining, graph neural networks, graph representation learning, heterogeneous net-

works.

I. INTRODUCTION
Most of the real-world data are organized and stored in
graph structures, such as paper citation networks, knowl-
edge graphs, social networks, and so on. It is difficult to
model these non-Euclidean data directly by machine learning
methods [1]. Traditional machine learning methods consider
each node’s features separately, limiting their abilities of
processing graph-structured data. Graph representation learn-
ing aims to learn low-dimensional representations for the
nodes or (sub)graphs. It can preserve the local information
of the nodes as well as the global structure information. For
this reason, learning an informative graph representation is
of great significance [2]. It can facilitate various downstream
tasks, such as node classification [3], [4], link prediction [5],
[6], and recommendation system [7], [8].

There are a lot of researches on graph representation learn-
ing. They can be categorized into two classes below: 1)
Random walk based methods. Inspired by the word vector

The associate editor coordinating the review of this manuscript and
approving it for publication was Nadeem Igbal.

training method in word2vec [9], a series of node represen-
tation learning methods based on random walk and skip-
gram have appeared [10]-[13]. These methods are intuitive
and simple, but they can only preserve structural information
and cannot consider node features. 2) Neural network based
methods. With the development of neural networks, some
algorithms widely used in deep learning are generalized to
graph-structured data. Spectral graph neural networks [14]—
[16] based on spectral theory and spatial graph neural net-
works [17]-[19] attracted extensive attention. These methods
integrate the idea of attention mechanism [20] and convo-
lutional neural network (CNN) [21], and so on, achieved
remarkable results in processing graph-structured data. How-
ever, most of these methods are designed for homogeneous
graphs with only one type of node and one type of edge in a
graph.

The real-world graph structures, such as knowledge graphs
and social networks, often contain multiple edge and node
types, which belong to heterogeneous information networks
(HINs). The methods designed for homogeneous graph rep-
resentation learning can not be applied to heterogeneous

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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networks directly. Therefore, the research on the HIN repre-
sentation learning is worthing and challenging. In this paper,
we focus on the representation learning of HIN. Because of
the diversity of the edges and nodes, HINs generally contain
richer information than homogeneous networks. It also brings
difficulties to data processing and the representation of the
interaction between nodes. Here we take the HIN in Fig. 1 as
an example to demonstrate this phenomenon. It includes three
types of nodes (author, conference, and paper), abbreviated as
A, C, and P, and two kinds of edges (write and publish). Note
that we ignore the direction of the edges here. In HIN rep-
resentation learning studies, meta-path [22] often represents
the different semantic relations between nodes. It is the com-
posite relationship of nodes and edges in HINs. As illustrated
in Fig. 1(c), given the meta-path type Author-Paper-Author
(A-P-A), there are corresponding meta-path instances in the
graph, such as A1-P2-A2. The semantics of this meta-path is
that two authors have published a paper together so that there
is close cooperation between the authors connected by this
kind of meta-path.

. Author
A Paper

N So
\ ~
Conference Se---
= @~
< \

- T ~ ~ N

< > Write NN g
®--
<—>  Publish “ Iy
(@) (0)
A—P—A A—P—C—P—A

FIGURE 1. A toy example of HIN and meta-path. (a) The node and edge
types. (b) An example HIN with three types of nodes and two types of
edges. (c) A meta-path instance of Author-Paper-Author (APA). (d) A
meta-path instance of Author-Paper-Conference-Paper-Author (APCPA).

In recent years, there have been some researches on HIN
representation learning. Based on meta-path, some methods
generate node sequences by meta-path guided random walk
and utilize the idea of skip-gram to train node representation
[23], [24]. Some methods define the measure of similarity
between node pairs, and then train node embedding by com-
bining the aggregation operation and the node sequences gen-
erated by random walk [25], [26]. Some researches combine
the methods of deep neural networks, such as CNN [21],
recurrent neural network (RNN) [27], and attention mech-
anism [20] to generate node representation and aggregate
neighbors based on meta-paths [3], [28]-[30].

These methods have achieved significant performance.
However, HIN representation learning still faces two main
challenges:

1) For the various types of nodes and edges, we use meta-
paths [22] to refine meaningful semantic representations in
heterogeneous graphs, so as to make more effective use of the
relationships between nodes. But not all semantics described
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by meta-paths are equally important for a particular task,
treating them equally leads to inefficiency. Some methods
based on random walk [25], [26] can not consider the different
semantics and importance of meta-paths, which leads to great
limitation in representation learning. For this, We consult the
attention mechanism [20] and use the weighted aggregation
method that similar to GAT [18] which can consider the
importance of different meta-paths.

2) When performing aggregation, previous methods can-
not consider each meta-path’s semantics separately. They
always aggregating the representation of each kind of meta-
paths in the same hidden space, which leads to semantic
confusion. We take the two meta-paths in Fig. 1 as a toy
example, meta-path Author-Paper-Author (APA) represents
the co-authoring relationship between two authors. Meta-
path Author-Paper-Conference-Paper-Author (APCPA) rep-
resents that two authors published papers in the same con-
ference. Different meta-paths will lead to entirely differ-
ent semantics even the nodes connected are of the same
type. Connections in different meta-paths indicate different
information. If the aggregated representations are simply the
weighted sum of the two meta-paths’ representation, it will
cause semantic confusion and lead to the problem of lack-
ing representation ability. In addition, most neural network
based methods only aggregate the information of one-hop
neighbors, which may lead to insufficient aggregation of node
information. However, multi-layer graph neural network has
the problem of over-smoothing.

To address these problems, we propose a HIN represen-
tation learning method called Semantic Aware HIN Repre-
sentation learning Network (SAHRN). Our contributions are
summarized as follows:

« We highlight the importance of taking each meta-path
semantically different. Through the proposed seman-
tic aware HIN representation learning method, we can
sufficiently model the different semantics of different
meta-paths. It mitigates the problem of lacking node
representation ability caused by the meta-path semantic
confusion.

« We also propose to add a layer aggregation mechanism
as variants of the model. It can integrate multi-hop
neighbor relationship to further improve the effect of
HIN representation learning.

« We conduct extensive experiments to illustrate the effec-
tiveness of our proposed model. Experiments on three
HIN datasets show that SAHRN achieves consistent
improvements compared to state-of-the-art graph rep-
resentation learning methods. The analyses and exper-
iments on each component of the model confirm the
validity of the model.

Il. RELATED WORK

In this section, we review related works about HIN repre-
sentation learning related to our proposed method. They are
presented in two parts below.
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A. GRAPH NEURAL NETWORK
With the development of neural network, the graph neural
network, which extend the deep neural networks to graph
data, have been intensely studied [1]. First introduced in [31]
and [32], Graph Neural Network (GNN) has been combined
with many different deep learning methods and achieved
remarkable results. Inspired by the success of CNN [21] in
the Euclidean structure, there have been many researches
on generalizing CNN to graph-structured data. These studies
can be categorized into two kinds of approaches: spectral
based approaches [14]-[16] and spatial based approaches
[17]-[19]. 1) Spectral based approaches. To be specific,
the spectral method is to realize the convolution operation on
the topological graph using spectral graph theory. The idea
was proposed in [33]. Until it was simplified [15], the spectral
method has begun to develop vigorously. A common disad-
vantage of spectral methods is that they need to load the entire
graph into memory to perform graph convolution, which is
not efficient when processing large graphs. 2) Spatial based
approaches. The spatial method is very intuitive. In spatial
based method, we update the representation of the central
node by aggregating the information of neighbor nodes.
Hamilton et al. proposed GraphSAGE [17] that learns a
function to generate embedding by sampling and aggregating
the features of the central node’s neighbors. Velickovic et al.
[18] applied the attention mechanism [20] to the aggregation
of nodes by implicitly giving different weights to different
nodes.

These methods achieve remarkable effect on homogeneous
graphs, but they cannot be used on heterogeneous graphs
directly.

B. GRAPH REPRESENTATION LEARNING
Graph representation learning aims to learn low-dimensional

representation for individual nodes or the the entire
(sub)graphs [34].

1) GRAPH REPRESENTATION LEARNING FOR
HOMOGENEOUS GRAPH

There are many researches on homogeneous graph embed-
ding learning. Inspired by word2vec [9], Perozzi et al. [10]
first applied the idea of word embedding to graph struc-
ture. By combining the idea of random walk and skip-gram,
the node vector representation is generated. Grover et al.
proposed node2vec [11] and optimized the strategy of random
walk. In Tang et al.’s work [12], they explicitly defined the
first-order and the second-order similarity of the network
to optimize the node embedding. In addition, researchers
explored graph autoencoder to get the embedding by encoder-
decoder structure [35], [36]. All these methods designed for
homogeneous graphs have shown their potential in preserving
the information of the graph structure. However, due to the
heterogeneity of HINs, these methods can not be directly
applied to HIN.

220276

2) GRAPH REPRESENTATION LEARNING FOR HIN

The HIN representation learning methods can be divided
into the following two categories: 1) Random walk based
methods. Different from the random walk in DeepWalk [10],
Dong et al. [23] adopt random walk based on meta-path to
handle the heterogeneity of HIN. Zhang et al. proposed the
notion of meta-graph to enhance the flexibility and relia-
bility of meta-path. Shi et al. [30] integrated embeddings
of multiple meta-paths as HIN embedding, which is then
used to perform prediction tasks combined with traditional
matrix factorization approach. These methods are intuitive
and have achieved good results, but they fail to consider
the rich features of nodes, and they cannot distinguish the
semantics of different meta-paths, which leads to the incom-
plete utilization of graph and node information. 2) Neural
network based methods. In addition to the methods based
on random walk, the methods based on convolutional graph
neural networks have also achieved good results recently [3],
[25], [28], [29], [37], [38]. On the one hand, HetGNN [25]
uses CNN [21] and bi-directional long short-term memory
network (Bi-LSTM) [27] to model different types of features
of nodes to generate feature vectors. On the other hand, it inte-
grates attention mechanism [20] to aggregate different types
of neighbor nodes to obtain the final vector representation.
Wang et al. proposed HAN [28] that takes the meta-paths
feature that aggregated using attention mechanism [20] as the
representation of nodes. Compared with HAN, Fu ef al. [29]
adds the information of the inner nodes of meta-paths, which
improves the expression ability. These methods confuse dif-
ferent semantic meta-paths, which impedes their representa-
tion ability. Fu er al. [37] considers the nodes and the rela-
tionship between nodes as a binary classification problem,
which can distinguish different meta-paths’ relationships, but
it failed to make use of the information of nodes, which leads
to limited representation ability.

In order to solve the problems in previous works, we pro-
posed SAHRN. Our proposed method takes into account the
different semantics of each meta-path and can preserve the
information of each meta-path more clearly and concisely.
Compared with the previous methods, we take the different
semantics of each meta-paths and multi-hop relations into
consideration, and improve the representation ability of the
nodes.

IIl. PRELIMINARIES
In this section, we first introduce some terms and concepts
related to heterogeneous graphs, and then make a formal
problem definition of HIN representation learning.
Definition 1 (Heterogeneous Information Network (HIN)):
A heterogeneous information network is defined as a directed
graph G = (V, E, ¢, ) with node set V and edge set E. ¢ :
V — Aand  : E — R are node type mapping function and
edge type mapping function, respectively. Which means each
node v € V belongs to one particular node type in the node
type set A, and each edge e € E belongs to one particular
edge type in R, i.e., p(v) € A and ¥(e) € R. When |A| +
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|R| > 2, the network is a HIN, otherwise, it degenerates to a
homogeneous network.

Definition 2 (Meta-Path): A meta-path P is defined on
R R,
the heterogeneous network G in the form A 3 oa 3

. ﬁl) Ajy1. It defines a composite relation R = R; o Ry o

- o Ry between Ay and Ajy1, and can be abbreviated as
A1A; - - - Aj+1. Given a meta-path P, a meta-path instance p
is defined as a sequence of node types and edge types that
correspond to the node types and edge types in P.

Definition 3 (Meta-Path Based Adjacency Matrix): Given
the i-th meta-path P, v, € V andv; € V are connected by the
meta-path, then v; is the neighbor of v, based on meta-path
Pi. The meta-path based neighbors N\Zi of vy, are defined as
the set of nodes that connected with v, by meta-path P;. Note
that N‘f:,i includes v, itself. Such neighborhood relation can
be organized as adjacency matrix based on particular meta-
path, denoted as A € RVI*Vil ywhere Aifj = 1 ifv, and v;
are connected by meta-path P; and Aifj = 0 otherwise. And
V; is the node set of the target type.

Definition 4 (Heterogeneous Network Representation
Learning): Given a HIN G = (V,E, ¢, V) and the feature
matrix X € RIVit:  the HIN representation learning task is
to learn low-dimensional representation H € RV ywhich
preserves both structural features and node attributes. V;
is the set of the target nodes and dy, is the initial feature
dimension of them. While d is the embedding dimension with
d K dp,. The representations of the nodes or the graphs can
then facilitate downstream tasks, such as node classification
and link prediction.

IV. PROPOSED METHOD

In this section, we present SAHRN, a semantic aware model
for HIN representation learning. The main notations used in
this paper are summarized in Table. 1.

TABLE 1. Main notations used in this paper.

Notations | Descriptions
G A HIN
P A set of meta-paths
P; The i-th meta-path
Nf K The set of neighbors of node v based on meta-path P;
APi An adjacency matrix based on meta-path P;
X The initial feature matrix of the HIN
wPi The projection matrix of meta-path P;
HP: The projected node feature matrix of meta-path P;
hii’(l) The hidden representation of node n in the I-th layer
afjf ]’.(l) The attention coefficient

A set containing the hidden representation of each meta-path
oPFi The predicted output based on meta-path P;
HP' The final representation of the nodes

A. ARCHITECTURE OVERVIEW

The overall structure of the SAHRN model is illustrated
inFig. 2. The input of the modelisthe HING = (V, E, ¢, ¥),
with the initial feature matrix denoted by X € RN*d \where
N = |V| and d is the dimension of the initial feature of each
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target node. For each dataset, we have a manually defined a
set of meta-paths, denoted as Py; = {P1, P>, ..., Pr}, where
T is the number of meta-paths. Based on which we can calcu-
late the meta-path based neighbors of each node and the meta-
path based adjacency matrix set A” = {AP1, APz ... APT}
of the HIN. Taking these as inputs, the SAHRN model is con-
structed by three components: semantic aware representation
projection, semantic aware meta-path aggregation, and layer
aggregation, which are introduced in Subsection IV-B, IV-C
and IV-D respectively.

B. SEMANTIC AWARE REPRESENTATION PROJECTION

For different meta-paths, they have different semantics. Cal-
culating and aggregating the representations based on meta-
paths with different semantics will cause confusion. We take
the meta-paths APA and APCPA in DBLP dataset as an exam-
ple. APA means that the same paper connects two authors.
That is, they are co-authors of an article. In comparison,
APCPA means that two authors have papers published in the
same conference. The meaning of the two meta-paths and
the degree of the nodes based on a particular meta-path are
different. Therefore, we first project the nodes’ features into
different hidden spaces based on the different semantics of
the meta-paths to facilitate aggregation of the same kind of
meta-path. Specifically, the initial feature matrix of the target
node is X € RN*? The feature of node v, is initialized
as h, € R?. For each meta-path P; in the meta-path set,
we define projection matrix W¥i € R%*? to map the feature
into different semantic spaces. Where d; is the dimension of
the hidden space for meta-path P;. The projection process is
formulated as:

HP =wFi X

where H” e RN*% is the projected representation of
the meta-path P; in P;’s particular hidden space R%. And
hﬁ" e HP is the mapped feature of the n-th node. For
the HIN G, we denote the hidden representation set H P —
{HP1,HP2, ... | HPT}, T is the number of the meta-path.

C. SEMANTIC AWARE META-PATH AGGREGATION

Given a meta-path P;, the semantic aware meta-path aggre-
gation is to aggregate the semantic and structural information
of particular meta-paths. Specifically, for the target node v, €
V, P; is the meta-path that connects it with its neighbors with
particular semantics. Our purpose is to define an aggregation
function so that node v, can aggregate the neighborhood
information based on meta-path P; and learn a new represen-
tation.

For each meta-path, we aggregate the neighbors of the
central node based on the meta-path. Because of HINs’ het-
erogeneity, we can’t aggregate all the inner nodes on one
meta-path instance. We only take the endpoints of the meta-
path as neighbors of the target nodes. Inspired by the attention
mechanism [20] and its application in GAT [18], we use the
method in the meta-path information aggregation stage.
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FIGURE 2. The overall architecture of SAHRN. (a) Semantic aware representation projection. For each meta-path, we project the nodes’ features into
different hidden spaces. (b) Semantic aware meta-path aggregation. (c) Layer Aggregation. The outputs of each layer are fed into a layer aggregation

component. And then used to generate the predicted output.

By stacking the multi-layer structure, we capture the fea-
tures of multi-hop neighbors. The output of each layer will
be preserved for layer aggregation, which will be specified
in Section IV-D. Specifically, for the n-th node in the HIN,
attention mechanism [20] is used to aggregate its neighbors’
features based on meta-path P;:

. Pi(l Pi,(1-1
hfl’(l) =0 Z an’j() . WV . h] ( )
Ny

where o is a nonlinear activation function, Nf " is the neigh-
bors of node v, based on meta-path P;. otiij.’ ® is the attention
coefficient and represents the normalized value of the impor-
tance of node v;. Which is calculated as follows:

85;(1) = LeakyRelu (WQT : [WK - hn; Wk hj])
exp (ePif(l))
O‘Zif(l) _ softmax (85;(1)) - nyj

2 jenfi OXP (653(1))
where [; | means concatenation operation. W, Wgp and Wy
are trainable weight matrices. Wx and Wy are linear transfor-
mation matrices with shared parameters. Wp € R%i and Wk,
Wy € RY9*_where d is the hidden dimension of the attention
layer. To ensure the stability of training, we also use the multi-
head attention mechanism [20] refer to the settings in GAT
[18]. The result of the calculation by multi-head attention can
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be denoted as:

K

Pi(l) _ Pi,(1).k k3 Pi(-=1)
hn()—H o Zan’j -WV~hj

. P
eN, !

k=1

where K is the number of heads, and || represents concate-
nation. Note that the projected representation is the input
of the first layer, i.e., hﬁi’(o) = hf". After semantic aware
meta-path aggregation, we obtain the hidden representa-
tion H = {HV,H®, ... HD} for each meta-path in
each layer. Where L is the total number of the stacked

layers, and the representation of the [-th layer is H® =
{HPI,(I)’ HP2O ... ’HPT’(I)}_

D. LAYER AGGREGATION

For the semantic aware meta-path aggregation step, the infor-
mation transfer in the first layer can only consider the nodes’
one-hop neighbors based on one meta-path. It may not lead to
the best representation ability. If we stack multi-layer graph
neural networks as the block of the model and take the final
layer’s representation as the output, we can consider a wider
range of nodes. But it may cause the problem of gradient
vanishing. This means the back-propagation through these
networks will lead to over-smoothing. Eventually, the fea-
tures of nodes converge to the same value [39]. That is to say,
a small number of layers may lead to unstable and insufficient
aggregation. At the same time, a more significant number of
layers may lead to the problem of over-smoothing.
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According to the argument in [40], some nodes in the
graphs have few neighbors, while some nodes (hubs) are
connected with many nodes at the same time. It results in the
phenomenon of over-smoothing when stacking multi-layer
convolution graph neural networks in the model. However,
only one layer of transformation may lead to insufficient
aggregation of information. In the social network from
Googleplus [41], the random walk from a hub node in the
center almost extends to the whole graph in four steps. In con-
trast, the random walk from a node with a small degree in a
tree-like structure only covers a small part of all nodes [40].
Therefore, considering the different degrees and structures of
nodes, the information dissemination in the network will be
affected differently. In order to learn a better representation
for each node, we stack multi-layer graph neural networks
and keep the historical information of each layer, and finally
aggregate it. In this way, we can avoid the problem of over-
smoothing while aggregating multi-hop neighbor represen-
tations. Inspired by the residual connection of Resnet [42]
and JK networks [40], we designed a variety of aggregation
methods between layers as variants of the model.

After getting the output of each meta-path in each layer,
we perform layer aggregation operation. The purpose of
layer aggregation is to design an efficient aggregation
method to consider each layer’s information comprehen-
sively. To avoid the insufficient aggregation of only one layer
architecture and the over-smoothing of multi-layer archi-
tecture, we designed three kinds of candidate aggregation
functions. Taking the meta-path P; as an example, H' =
{HPi’(l), HP @ L ,HP"'(L)} denotes the output representa-
tion of P; in each layer.

Average Aggregation: This function takes the element-wise
average of each layer’s output as the final feature of the nodes:

it = AVERAGE ({f®.1=0,1,- -, L})

which takes into account the features from each layer equally.
Max-Pooling: The element-wise maximize of the output of
each layer is taken as the feature representation of the nodes:

hPi = MAX ({hﬁ"(”, [=0,1,- L})

which selects the most informative feature in each dimension
as the aggregated feature. For the central node with a large
degree and the node in the tree-like structure with a small
degree, we can choose the information which contributes
more to different kind of nodes.

Concatenation: It is a very direct aggregation method.
It takes the concatenation of the output of each layer directly
in the node feature dimension.

hPi = CONCAT ({hﬁiﬂ), 1=0,1, L})

which can keep the output of each layer intact. Note that
none of the three aggregation methods introduces additional
parameters to learn.

After layer aggregation, the feature representation of nodes
can be denoted as HY = {HP"’l JHPRZ oo HP"*T}. For each
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meta-path representation, we use the fully connected layer to
predict the node types distribution:

OP,‘ — HP,‘ . WP,‘

where WP e RN*d  In this way, we totally get T output
from the meta-paths. By adding them together, we get the
final output:

o= (27)

We rewrite it in the form of matrix representation for the
convenient of the calculation and representation:

O=0o (H”1 WP HPY WP 4 T WPT)
— 0 (I:HPI;HPZ; ;HPT:I.I:WPIT; whT. .. WPH])
=0 (HP/ . WP/>
where o is a nonlinear activation function. W#'
dyyr 1s the number of categories in the classification task, d

is the hidden dimension of the attention layer. And the final

representation learned in our model is denoted as H ¢
RN *dKT

dKTxd,
e R * out |

E. TRAINING

After the projection and aggregation as mentioned above,
we get the final node feature representation, which can be
then used for various downstream tasks.

Here, we take semi-supervised node classification as the
downstream task to train the model. We use part of the labeled
nodes as the training set. Then we calculate the classification
loss of the final output O and the actual node label using the
cross entropy loss, and minimize it through back-propagation
and gradient descent. The loss function can be formulated as:

L=—Y yilog0;
ieV;
where V; is the set of labeled nodes in the training set. O; and
y; are the predicted and the ground truth class label for node
i, respectively.

V. EXPERIMENTS

In this section, we conduct extensive experiments and anal-
yses to demonstrate the effectiveness of SAHRN on HIN
representation learning. We first introduce three publicly
available real-world HIN datasets and the baseline models
for representation learning. Then we evaluate our proposed
models and the baseline models in two downstream tasks.
Finally, we perform a series of detailed experiments on each
component of the model to analyze the effectiveness of the
proposed method.

A. DATASETS
We adopt three widely used real-world HIN datasets to evalu-
ate the performance of our proposed method and the baseline
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TABLE 2. Statistics of datasets.

Dataset | Number Number of Feature Di- Training Validation Test Set Meta-path
of Nodes Edges mension Set Set Set
IMDB | 12890 19120 1232 300 300 2687 MAM
MDM
APA
DBLP | 27194 122393 334 800 400 2857 APCPA
APTPA
PAP
ACM 8916 12769 1830 600 300 2125 PSP

models. The datasets are provided in HAN [28] and are
accessible from the original paper. We conduct experiments
on node classification and node clustering in these datasets.
Simple statistics of these datasets are summarized in Table.
2. Among them, the choice of meta-paths is based on domain
knowledge and experimental results.

IMDB:! 1t is a collected subset from the IMDB which
contains nodes of movies, directors, and actors, denoted as M,
D, and A. Movies are the target nodes that can be categorized
into three classes based on their genre: action, comedy, and
drama. We utilize the plots keywords of the movies repre-
sented by bag-of-words as features. Meta-path set { MAM’,
‘MDM’} is employed to perform the experiments.

DBLP:* Tt is an academic paper dataset. We use the
extracted subset of DBLP which contains nodes of papers,
authors, terms and conferences, denoted as P, A, T, and C
respectively. This dataset consists of 20 conferences from
four different research areas: database, data mining, machine
learning, and information retrieval. The author’s nodes are the
target nodes. Each author is labeled based on their research
field according to the conferences they submitted paper in.
And we use the elements of a bag-of-words represented
of keywords. Meta-path set {‘APA’, ‘APCPA’, ‘APTPA’} is
employed to perform the experiments.

ACM:3 Tt is another academic paper dataset, which con-
tains nodes of papers, authors, and subjects, denoted as P,
A, and S. The paper’s nodes are the target nodes. They are
categorized into three classes: database, wireless communica-
tion, and data mining. The initial features of the paper nodes
are represented as bag-of-words of keywords. Meta-path set
{‘PAP’, ‘PSP’} is employed to perform the experiments.

B. COMPARED METHODS

We compared our proposed SAHRN with some state-of-the-
art baselines in graph representation learning. These models
include random walk based models as well as GNN based
models.

DeepWalk [10]: A random walk based method. It is
designed for homogeneous graphs. We perform DeepWalk in
each meta-path based adjacency matrix. And finally report
the best performance.

1 https://www.imdb.com
Zhitps://dblp.uni-trier.de
3 http://dl.acm.org

220280

GCN [15]: A GNN based semi-supervised method for
homogeneous graphs. We test GCN on each meta-path based
adjacency matrix and report the best performance.

R-GCNs [38]: A GNN based method. The weights of
different types of edges can be considered.

HetGNN [25]: A GNN based method for heterogeneous
graphs, which can comprehensively consider node heteroge-
neous content information and neighbor structure to generate
node embeddings.

GAT [18]: A GNN based method for homogeneous graphs.
It utilizes the attention mechanism [20] to perform spatial
domain convolution operation. We also test GAT on each
meta-path based adjacency matrix and report the best perfor-
mance.

HAN [28]: A GNN based method for heterogeneous
graphs. It learns node representations from each meta-path.
By aggregating these representations using attention mecha-
nism [20], it generates representation vectors for each node.

SAHRN (Our Proposed Method): A graph representation
learning method designed for HINs. It can distinguish the
different semantics of each meta-path.

SAHRNavg: A variant of our proposed model. Layer aggre-
gation is added to the model to fuse multi-hop neighbors’
information. It uses average aggregation function.

SAHRNmxp: A variant of our proposed model with added
Layer aggregation. It uses max-pooling aggregation function.

SAHRNcat: A variant of our proposed model with added
Layer aggregation. It uses concatenation aggregation func-
tion.

C. HYPER-PARAMETER SETTINGS

In the stage of model training, the training, test, and validation
set are pre-segmented. In order to ensure the comparability
of the models’ effects, we use the same data segmentation
in each model. The split ratio and the meta-paths we use are
shown in Table. 2.

For our proposed method SAHRN, the model is
implemented with Tensorflow, a python-based framework.
Detailed implementation can be found in the source code we
provide. We randomly initialize parameters. For optimiza-
tion, we set the learning rate of 0.005, the 12 regularization
weight of 0.001, and the optimize function of Adam [43].
The number of attention head of 8. We use early stopping
and set the number of epochs to 100, the patience of 5. The
nonlinearity function is set to ELU [44]. The set of parameters
in the attention aggregation is the same as GAT [18]. To make
the model easy to tune, we set the same hidden projection
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TABLE 3. Node classification results.

Dataset | Metric Train- Deep- GCN R- Het- GAT HAN SAHRN-| SAHRN-| SAHRN-| SAHRN
(%) ing Walk GCN GNN avg mxp cat
IMDB Micro- 20% 4141 55.40 49.54 56.80 56.91 59.17 59.63 59.22 57.81 60.19
F1 40% 41.98 55.34 51.20 56.09 56.96 59.77 59.75 60.45 59.94 61.18
60% 42.44 55.60 53.93 56.79 56.93 60.28 61.19 61.13 59.46 61.99
80% 43.46 55.33 55.95 56.82 56.77 59.59 60.99 61.65 62.08 61.99
Macro- | 20% 36.87 47.65 48.31 4781 48.71 52.54 53.93 55.00 55.39 55.34
Fl1 40% 37.21 47.19 50.06 48.19 49.40 5391 54.50 56.30 56.81 56.62
60% 37.21 48.64 52.63 48.13 4891 54.67 56.02 57.22 57.39 57.30
80% 37.94 47.98 54.54 48.69 49.31 53.81 55.81 57.93 57.90 57.28
DBLP Micro- 20% 91.29 92.58 91.66 92.66 92.00 93.07 93.59 93.43 93.25 93.65
F1 40% 91.72 9243 91.82 92.76 92.29 93.20 93.92 93.87 93.63 93.97
60% 92.64 92.70 92.16 92.73 92.41 93.23 94.18 93.94 93.74 94.25
80% 92.33 92.66 92.55 93.13 92.57 93.48 93.74 94.04 93.90 94.86
Macro- | 20% 90.29 91.64 90.53 91.65 90.78 92.19 92.83 92.66 92.40 92.86
F1 40% 90.70 91.53 90.72 91.71 91.15 92.29 93.16 93.08 92.88 93.19
60% 91.74 91.84 91.20 91.65 91.36 92.35 93.44 93.18 93.08 93.55
80% 91.37 91.74 91.65 92.09 91.43 92.61 93.28 93.23 93.11 94.25
ACM Micro- 20% 68.15 87.66 86.98 87.72 87.86 89.34 90.24 89.95 90.57 90.15
Fl1 40% 70.89 88.12 88.76 87.96 88.16 90.19 90.45 89.84 90.77 90.47
60% 71.04 88.35 89.89 88.26 87.98 90.65 91.05 90.29 90.15 90.52
80% 71.88 88.45 90.12 88.68 88.75 89.93 90.78 90.31 91.22 90.73
Macro- | 20% 68.04 87.62 87.13 87.71 87.80 89.44 90.36 90.06 90.67 90.16
F1 40% 70.77 88.11 88.90 87.96 88.12 90.27 90.55 89.92 90.85 90.47
60% 70.95 88.33 90.08 88.29 87.90 90.74 91.13 90.36 90.29 90.56
80% 71.78 88.41 90.28 88.76 88.60 90.11 90.90 90.38 91.30 90.77
TABLE 4. Node clustering results.
Dataset | Metric | DeepWalk | GCN R-GCN | Het-GNN | GAT HAN SAHRN
IMDB | NMI 0.0087 0.0737 | 0.0081 0.0934 0.0799 | 0.1081 | 0.1125
ARI 0.0073 0.0723 | 0.0100 | 0.0921 0.0725 | 0.0968 | 0.0970
DBLP | NMI 0.7322 0.6981 | 0.1834 | 0.7576 0.6951 | 0.7681 | 0.7883
ARI 0.7745 0.7513 | 0.I513 0.8190 0.7465 | 0.8308 | 0.8446
ACM NMI 0.2180 0.5448 | 0.3901 0.5930 0.5796 | 0.6008 | 0.6201
ARI 0.2256 0.5780 | 0.3349 0.5889 0.6137 | 0.6142 | 0.6236

dimension for each meta-path in one dataset. In DBLP, ACM
and IMDB, the dimension are set to 500. The number of
layers of these three datasets are set to 2.

For baseline models, we train the GAT and GCN for
100 epochs with the early stopping patience set to 5. Except
for special instructions, we keep the settings as in the original
paper. For the methods designed for homogeneous networks,
we perform experiments on each meta-path based adjacency
matrix, and report the best performance.

D. PERFORMANCE COMPARISON

In this subsection, we evaluate the effectiveness of the node
representation learned by our proposed models with the base-
line models. The node representation is used for node classi-
fication and clustering tasks respectively.

Fig. 3 shows the experimental results on three datasets. Our
original model achieves better results on the three datasets.
However, the accuracy of node classification of the variant
model without semantic aware projection has shown a sig-
nificant decrease. This confirms the necessity of semantic
aware projection in our proposed model. Distinguishing the
semantics of different meta-paths can significantly improve
the representation effect of node embedding.

1) NODE CLASSIFICATION
Here we employ support vector machine (SVM) classifier to
perform node classification. We set varying training propor-
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tions for each dataset, 20%, 40%, 60%, and 80%. For the
stability of the results, we repeat the experiment ten times on
each dataset and report the average Macro-F1 and Micro-F1.
The experiment results are shown in Table. 3.

As shown in Table. 3, SAHRN and its variants achieve
the best performance. Compared with the baseline models,
the experimental results of our proposed method on the three
datasets show significant improvement.

For the baseline methods, the GCN, GAT, R-GCNs and
HetGNN that based on GNN5s perform better than the method
based on random walk. This is because GCN [15] and GAT
[18] integrated the idea of CNN [21] and attention mecha-
nism respectively, which can better aggregate the informa-
tion of nodes. What’s more, they can consider the features
of nodes and graph-structured information simultaneously.
In comparison, DeepWalk [10] can only consider the graph
structural information. Therefore, GNN based models show
better performance. Compared with the models designed for
homogeneous graphs, HAN [28] performs better in the three
datasets. It can integrate information from different meta-
paths. Through the attention mechanism, the information
of multiple meta-paths is fused in the same hidden space.
The difference in importance of each meta-path can also be
considered.

Our proposed model can take the semantics of different
meta-paths into account and calculate them separately in
different hidden spaces, so it achieves the best results. Note
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FIGURE 3. Performance comparison of the original model and its variant without semantic aware projection.

that in DBLP, the SAHRN without layer aggregation achieves
the best result. While in ACM and IMDB, the variants of
SAHRN that add layer aggregation achieve better results in
most cases. This may be because of the difference in the graph
structure. We will leave this phenomenon to Subsection V-E
for further discussion.

2) NODE CLUSTERING

We employ the K-Means algorithm to compare the perfor-
mance of each model in node clustering. The number of
clusters K is set to the categories of the target node in each
dataset. To measure the clustering effect, we use normalized
mutual information (NMI) and adjusted rand index (ARI)
as the evaluation methods. For the stability of the results,
we repeat the experiment ten times on each dataset and report
the average NMI and ARI. The results are shown in Table. 4.
Here, in order to facilitate comparison, we only use the basic
model for comparison and analysis.

As shown in Table. 4, we can see that SAHRN consis-
tently performs better than the baseline models. The node
representation learned by our proposed method can be effec-
tively applied to node clustering tasks. The performances
of the model designed for homogeneous graphs are sig-
nificantly worse than that of the HIN representation learn-
ing model. That’s because they cannot take into account
the rich semantics of meta-paths. On the other hand, HAN
aggregates the representation of each meta-path, and con-
fuses semantics. Our proposed method can distinguish meta-
path semantics by projecting the node features into different
hidden spaces based on the meta-paths. Therefore, it gets
a better node representation and outperforms the baseline
model.
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E. DETAILED DISCUSSION OF SAHRN

In this subsection, we perform detailed analyses and experi-
ments to confirm the effectiveness of each component of our
proposed method.

1) EFFECTIVENESS OF SEMANTIC AWARE PROJECTION
OPERATIONS
In our basic model, we use semantic aware projection for
the nodes based on each meta-path. By projecting node fea-
tures into different hidden spaces, we can avoid semantic
confusion. To validate the effectiveness of this component,
we design a variant of the model. Here SAHRN is our basic
model that contains the projection component. SAHRN-
project is the variant that removes the projection operation
from the original model. Like the original model, we perform
node aggregation based on each meta-path using the attention
mechanism in this variant. Besides, we take the average of
the embeddings based on each meta-path to obtain the final
representation of the node. We still use node classification to
measure the effect of the models. The task settings are the
same as before. The experimental results are shown in Fig. 3.
Fig. 3 shows the experimental results on three datasets. Our
original model achieves better results on the three datasets.
However, the accuracy of node classification of the variant
model without semantic aware projection has shown a sig-
nificant decrease. This confirms the necessity of semantic
aware projection in our proposed model. Distinguishing the
semantics of different meta-paths can significantly improve
the representation effect of node embedding.

2) EFFECTIVENESS OF LAYER AGGREGATION

In the graphs, the neighbor structure of each node is different.
So as the degree of the nodes. There will also be differences
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in the dissemination of information between nodes. Some
nodes (hubs) are connected with a great amount of nodes at
the same time. If we stack multi-layer GNNGs, it will result
in over-smoothing. While in some graphs, the nodes have
few neighbors, only one layer of transformation may lead to
insufficient aggregation of information.

Based on our node classification results in V-D, in ACM
and IMDB, the variants of SAHRN that add layer aggregation
achieve better results in most cases. While in DBLP, the vari-
ants do not work well. We suspect that the different properties
of the datasets cause this. Therefore, we conduct experiments
to separately calculate the degree distribution of the nodes
in these three datasets. We use meta-path based adjacency
matrix in the previous experiment. Moreover, we calculate the
average degree of the nodes based on different meta-paths in
each dataset. The statistical results are shown in Fig. 4.

In DBLP, most nodes have a degree of more than 500,
which are mostly hub nodes with many neighbors, so infor-
mation spreads faster in DBLP. While the nodes in ACM and
IMDB generally have a smaller degree. They are more likely
to be in a tree-like structure. Experiments in [40] show that
random walk starting from this kind of node within a specified
number of steps cover much fewer nodes in the graph than
that from the hub nodes. It also confirms our conjecture. This
difference in the dataset structure leads to the different effects
of the model and its variants. According to the characteristics
of the dataset, stacking multi-layer graph neural networks and
selecting the appropriate number of layers will improve the
effect of node representation learning.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a graph representation learning
model, SAHRN. It learns node representations for hetero-
geneous information networks. We design a semantic aware
projection operation for SAHRN. For different meta-paths,
the nodes are projected into different hidden spaces to avoid
semantic confusion of meta-paths. Considering the difference
of information propagation in each dataset, we also design
a series of variants of our model. By stacking multiple lay-
ers of GNNs and preserving information from each layer,
we can avoid the problem of insufficient information dis-
semination or over-smoothing caused by multi-layer struc-
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ture. Extensive experiments on three datasets show that our
proposed model and its variants achieve better performance
than state-of-the-art baseline models. Our analyses and exper-
iments on each component of the model confirm the validity
of the proposed model.

In the future, we plan to investigate how to utilize the infor-
mation inside the meta-paths more comprehensively. It may
make it possible for us to preserve the semantics of the meta-
paths better.
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