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Generative Adversarial Network (GAN) is a thriving generative model and considerable efforts have been
made to enhance the generation capabilities via designing a different adversarial framework of GAN (e.g.,
the discriminator and the generator) or redesigning the penalty function. Although existing models have
been demonstrated to be very effective, their generation capabilities have limitations. Existing GAN vari-
ants either result in identical generated instances or generate simulation data with low quality when the
training data are diverse and extremely limited (a dataset consists of a set of classes but each class holds
several or even one single sample) or extremely imbalanced (a category holds a set of samples and other
categories hold one single sample). In this paper, we present an innovative approach to tackle this issue,
which jointly employs joint distribution and reparameterization method to reparameterize the random-
ized space as a mixture model and learn the parameters of this mixture model along with that of GAN. In
this way, we term our approach Joint Distribution GAN (JDGAN). In our work, we show that the JDGAN can
not only generate high quality simulation data with diversity, but also increase the overlapping area
between the generating distribution and the raw data distribution. We proceed to conduct extensive
experiments, utilizing MNIST, CIFAR10 and Mass Spectrometry datasets, all using extremely limited
amounts of data, to demonstrate the significant performance of JDGAN in both achieving the smallest
Fréchet Inception Distance (FID) score and producing diverse generated data.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Generative Adversarial Network (GAN) [15] has been demon-
strated as the state-of-the-art generative model in various tasks
of generating synthetic but realistic-like data [9,12,44,26,46,50].
A typical GAN model consists of two components, a generator
and a discriminator. We usually view the generator as the forger
who specializes in generating plausible data to fool the discrimina-
tor into accepting it as real data, while the discriminator could be
regarded as a detective who can determine whether the current
data are from the generator or the real dataset. The GAN model
sidesteps the difficulty of approximating many intractable proba-
bilistic computations, for it samples data from an easy-to-sample
distribution so the Markov chains [36] are never needed. Its gradi-
ents are tuned by using back-propagation, which makes the train-
ing computationally inexpensive. Besides the elegant framework,
the GAN model also enjoys the power of deep generative neural
networks, which, in theory, have the capabilities of approximating
any complicated probability distributions with adequate data. In
particular, the generator is a deep neural network, which is
designed to transform a noise sampled from a fixed, easy-to-
sample distribution (e.g., Uniform distribution with (�1, 1)) into
the ‘‘realistic” data. Because of its huge potentials, it has become
an active research field and many researchers try to enhance
data-generation capability by modifying the framework and its
two components or loss function (e.g., Wasserstein GAN (WGAN)
[4], Least Squares GAN (LSGAN) [34], Mixture Generators GAN
(MGAN) [20] and Relativistic average GAN (RaGAN) [22]). Although
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those GAN variants have been widely used in many applications
[26,31,11,21] and achieve impressively plausible simulated data,
their generation capabilities are not viable as the training data
samples are extremely limited and diverse, e.g., a dataset consists
of a set of classes but each class just holds several or even one
single sample. If the training dataset is extremely limited dataset,
the generated instances either hold identical samples or low
quality.

In deep learning, the overlapping area refers to such an area
which is intersected by two distributions. Fig. 1 shows a less formal
but more pedagogical illustration for overlapping area. In Fig. 1,
there exists two distributions, which are generated distribution
and original data distribution. We also assume both of two distri-
butions lying in a mapping space. From Fig. 1, we can see that
the two distributions just hold a small overlapping area in this
mapping space, which is indicated by gray shade region. Diversity
problem is also termed as mode collapse problem, which indicates
generator holding a part of modes of data distribution and missing
other modes. In addition, the generated data contain identical
instances. In general, the Jensen Shannon Divergence is maxed
out when the generated and real data distributions have disjoint
support [4]. Under such a scenario, the generated data distribution
pG zð Þ is far away from the original data distribution pdata xð Þ in the
mapping space, which results in that the generator fails to cor-
rectly capture all the modes of the data distribution [23]. This
becomes more challenging if the training data are extremely lim-
ited data samples.

To visually and effectively demonstrate our hypothesis, we
apply recent GAN variants to a diverse and extremely limited train-
ing dataset. Here, we take the MNIST dataset as the example to
form the extremely limited dataset. Only 10 samples are selected
from MNIST (figures ‘0’ to ‘9’), and each sample belongs to a speci-
fic category. They are diverse because each sample belongs to one
category; they are extremely limited because each category only
holds one sample. The generated images are shown in Fig. 2.

From Fig. 2, we can see that the mode collapse arises in most
existing GAN variants, i.e., most generated images are identical
or low quality. It is noticed that there are five GAN variants (sub-
figures (a)–(d) and (f)) sample noise from Gaussian (0, 1). DeLiGAN
(sub-figure (e)) [17] samples noise from the Mixture-of-Gaussians
model [47]. In addition, MGAN employs 10 generators and each
generator produces a single image. Also, we demonstrate the per-
formance of those GAN variants in imbalanced dataset (a category
Fig. 1. The gray shade region indicates the ove
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holds a set of samples while other categories just hold a single
sample), and we can observe the details in experiment section.

Wasserstein GAN (WGAN) [4] utilizes Wasserstein distance to
measure the dissimilarity between original data distribution pr

and generated data distribution pG. However, only certain optimiz-
ers (e.g.,RMSProp [41] or SGD [6]) are suitable for optimizing
WGAN. Other momentum based ones (e.g., Adam [24]) may even
turn the gradients negative, causing unstable training. RaGAN
[22] argues that the minimax game should simultaneously
decrease the probability that real data is real. The researchers
[22] induce this property by using a ‘‘relativistic discriminator”,
and prove that the relativistic discriminator makes training more
stable. However, it is not suitable for extremely limited training
data. MGAN [20], on the other hand, employs a mixture of genera-
tors to learn disconnected manifolds. Since there are no restric-
tions enforcing generators to learn those manifolds mutually
exclusively, generators may learn the same manifolds as each
other, resulting in the generation of identical instances.

When training a GAN, we usually learn a mapping from noise
distribution pz zð Þ to original data distribution prðxÞ. To guarantee
learning successfully, it requires a lot of training samples such that
the generator can disentangle the underlying factors of variation
and make the generated data diverse. When training data are
extremely limited, such a mapping mechanism becomes infeasible.
To address this issue, this paper proposes to explore an alternative
direction, which increases the power of the latent distribution. This
is because pz zð Þ is contained in pG zð Þ [3].

To this end, we propose Joint Distribution GAN (JDGAN), which
jointly employs multiple easy-to-sample distributions to construct
the randomized space Z and learns these distributions together
with the generator with reparameterization, without modifying
the framework. JDGAN addresses the mode collapse by increasing
the dimension of pz zð Þ to increase that of pG zð Þ, because pz zð Þ is
contained in pG zð Þ [3]. If the supports of pdata xð Þ and pG zð Þ are not
disjoint, the generator can correctly capture all the modes. In the
training of JDGAN, the overlapping area between pdata xð Þ and
pG zð Þ is significantly increased, even at the beginning of the train-
ing. To obtain a sample from the joint distribution, we employ the
reparameterization method introduced by Kingma [25] to sample
noise. Assuming the joint distribution is formed by a Gaussian dis-
tribution (G l; hð Þ) and a Uniform distribution (U a; bð Þ), we repre-
sent the noise from the joint distribution as a deterministic
function of l; h; a and b.
rlapping area between two distributions.



(a) DCGAN (b) LSGAN (c) WGAN

(d) RaGAN (e) DeLiGAN (f) MGAN

Fig. 2. A case study on extremely limited MNIST samples. The generator samples noise from standard Gaussian distribution (0, 1) for DCGAN, LSGAN, WGAN, RaGAN and
MGAN, and samples noise from a Mixture-of-Gaussians model for DeLiGAN.
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Since DeLiGAN [17] also modifies the input lalent space Z, a
likely concern is of the difference between JDGAN and DeLiGAN.
Here, we give the major differences between our proposed
JDGAN and DeLiGAN as follows:

� The randomized space is determined by the MoGmodel in DeLi-
GAN, and MoG model is a linear combination of multiple Gaus-
sian distributions, which causes each Gaussian distribution
having different weights. In this way, the MoG model has been
easily driven into the local optimal defect [7]. In other words,
holding most contribution for a specific Gaussian distribution
to MoG model dominates other Gaussian models. The MoG
model becomes a single Gaussian model under such a scenario.
Therefore, the mode collapse arises. For JDGAN, the randomized
space is determined by the joint distribution and joint distribu-
tion is a non-linear distribution, which increases the power of
prior distribution and can avoid pz zð Þ becomes a single
distribution.

� When we sample the noise from the MoG model, it needs two
steps. First, one of N Gaussian models is selected. Second, we
draw the noise from the chosen Gaussian distribution. Consid-
ering an extreme scenario, the same Gaussian distribution
may be chosen at each epoch. The MoG model becomes the sin-
gle Gaussian model under such a scenario, and the mode col-
lapse still arises.

� In our study, we fully discuss how to determine the number of
distributions. However, DeLiGAN does not give how to deter-
mine the number of Gaussian model. We believe that the num-
ber of distributions would influence the diversity of generated
data. More details are shown in experiment section.

In summary, the major innovations and contributions of this
paper are as follows:

� This paper proposes a novel JDGAN model which modifies the
input randomized space to enhance the generation capabilities
of the GAN model, overcoming the problem of mode collapse.

� This paper demonstrates how to sample noise from the joint
distribution and how to learn the parameters of the joint distri-
bution together with the generator from theoretical and empir-
ical perspectives, giving new insights into the success of JDGAN.

� Through comprehensive experiments on generating simulated
data, we demonstrate the effectiveness of the proposed
approach.

This paper is organized as follows. In Section 2 we discuss some
related work. We discuss the limitations of a single distribution in
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Section 3 and present our main idea in Section 4. In Section 5 we
will show our experimental results, and we conclude this work
in Section 6.

2. Related work

The GAN model displays its powerful generative capabilities
since its invention, however, the limitations (e.g., the loss of diver-
sity, mode collapse and vanishing gradients) are also obvious.
Hence, many modifications to the original GAN model have been
proposed, and they can be mainly categorized into three types:
modifying the components, modifying the penalty function and
modifying the architecture.

Modifying the components. The early researchers utilize some
seemingly simple but powerful litter tricks to improve the perfor-
mance of the GAN model. One of the first major improvements is
DCGAN [1], which hopes to bridge the gap between the success
of CNNs for supervised learning and unsupervised learning. It mod-
ifies the two components of the GAN model by adding some tricks
such as BatchNorm [30], ReLu activation [14] for the generator and
BatchNorm, LeakyReLu activation [45] for the discriminator, and
replacing any pooling layers [27] with strided convolutions (dis-
criminator) and fractional-strided convolutions (generator). These
modifications are suitable for both the generator and the discrim-
inator to learn good up-sampling and down-sampling operations,
which could improve the quality of simulated data. Salimans
et al. (Improved GAN) [39] propose heuristic approaches to stabi-
lize the training of GAN. Specifically, they use the feature matching
to address the instability of training a GAN model by changing the
objective for the generator to prevent the problem of overtraining,
and they use the mini-batch [30] discriminator to prevent the gen-
erator collapse, for the discriminator can easily tell whether the
generator is producing same outputs. Mirza et al. (Conditional
GAN) [35] train both the discriminator and the generator by using
the new input that is conditioned on adding extra information y
(e.g., class labels), and it can generate descriptive tags which are
not part of training labels. This modification holds considerable
flexibility for generation.

Modifying the penalty function. The GAN model generally
adopts the JS divergence [33] to calculate the similarity between
two distributions which are from different datasets, for the princi-
ple of GAN is to transform a distribution into another distribution.
However, it is hard to achieve the transforming process, and
always causes the mode collapse in practice. Thus, many research-
ers adopt different strategies to address this issue. WGAN [4]
replaces the JS divergence with the Wasserstein distance [37].
The value of JS divergence for a GAN model could be a constant



W. Li, L. Xu, Z. Liang et al. Neurocomputing 431 (2021) 148–162
as the two distributions have no overlapping area (or the overlap-
ping area can be neglected), which would cause the vanishing gra-
dients. The Wasserstein distance can reflect the dissimilarity
between the two distributions without an overlapping area. More-
over, Gulrajani et al. (Improved WGAN) [16] find that the weight
clipping adversely reduces the capability of the discriminator in
WGAN, they then improve the WGAN by penalizing the norm of
the discriminator gradients during training instead of performing
parameter clipping. LSGAN [34] modifies the loss function with
the Least Squares to generate samples that are closer to the real
data. This study argues that the Sigmoid Cross Entropy loss func-
tion [49] for the discriminator would lead to the problem of van-
ishing gradients as updating the generator using the fake
samples that are on the correct side of the decision boundary
and are far from the real data. The Least Squares loss function
can penalize the fake samples that are lying in a long way on the
correct side of the decision boundary moving toward the decision
boundary even though they are classified correctly.

Modifying the Architecture. Since manifolds of original data
are disconnected in the space and a single generator G only pro-
duces instances in certain regions of this space, the generated data
focuses on several or one single manifold. Researchers attempt to
increase the quantity of generator to learn more about different
manifolds. Tolstikhin et al. [42] added a new component to a mix-
ture model by running a GAN algorithm on a re-weighted sample.
Inspired by boosting techniques, this idea greedily aggregates
many potentially weak individual predictors to form a strong com-
posite predictor. This model is termed AdaGAN. Since AdaGAN uti-
lizes a sequential training technique to train the model, the model
is computationally expensive. Moreover, it is hard to search the
ChooseMixtureWeight and the UpdateTrainingWeight functions for
boosting techniques. Arora et al., [5], alternatively, trained a mix-
ture of generators and discriminators to play the minimax game
with the reward function being the weighted average reward func-
tion between any pair of generator and discriminator. This strategy
is not only computationally expensive but also lacks a mechanism
to enforce the divergence among generators. Ghosh et al. [13]
employed many generators and trained them by using multi-
class discriminators that, in addition to detecting whether a sam-
ple is fake or not, predict which generator produces this sample.
The loss function in this study focuses on detecting whether a sam-
ple is fake and does not directly encourage generators to produce
diverse instances. The recent GAN variant for increasing the quan-
tity of generator is MGAN [20]. MGAN employs many generators
G1:K and an extra classifier C to construct architecture. Although
study [20] claimed such a design can help a model learn all mani-
folds, it is difficult to achieve this goal in practice. MGAN does not
provide that Gi is mutually exclusive with Gj; i – j. In other words,
Gi and Gj may learn the same manifold during training. In addition,
MGAN adopts the shared parameters to save training cost. How-
ever, the shared parameters may cause all generators output the
same instance, given that the parameters have an influence to
the quality of data. RaGAN [22] argues that the Nash equilibrium
should simultaneously decrease the probability that real data is
real, which may improve the GAN performance. In this way, RaGAN
utilizes a ‘‘relativistic discriminator” to prove this property, and
this discriminator estimates the probability that the given real data
is more realistic than fake data, on average. However, it still suffers
from the challenge in the case of extremely limited data. We can
observe more details in section experiments.

Modifying randomized space. DeLiGAN [17] hopes to make Z

disconnected to learn the disconnected manifolds, with the mix-
ture of Gaussian (MoG) model. However, it is hard to make Z dis-
connected in practice. MoG model is a linear combination of
multiple Gaussian distributions, and the combined distribution
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still belongs to a bounded continuous distribution. This is pedagog-
ically shown in Fig. 3. There still exists the uncovered manifolds
such that some modes are missed in generated instances, given
that pz zð Þ is contained in pG zð Þ [3]. In addition, considering an
extreme scenario, the same Gaussian distribution has been chosen
at each epoch. The MoG model becomes the single Gaussian model
under such a scenario. The mode collapse is still not addressed.

3. Preliminaries

In this section, we discuss the limitations of sampling noises
from a fixed, easy-to-sample distribution and give the explanation
of reparameterization method.

3.1. The limited overlapping area

Although the GAN model was introduced in Section 1, we for-
mally present the GAN model as below to establish the continuity.
The GAN model was introduced by Goodfellow [15] as a novel gen-
erative model to simultaneously train a generator and a discrimi-
nator by using Eq. (1).

min
G

max
D

V G;Dð Þ ¼ Ex�pr xð Þ logD xð Þ½ �
þ Ez�pz zð Þ log 1� D G zð Þð Þð Þ½ � ð1Þ

where x comes from a distribution prðxÞ sampled from the original
dataset and z comes from a fixed, easy-to-sample distribution pz zð Þ
(e.g., Uniform with (�1, 1) or Gaussian with (0, 1)). The generator
builds a mapping function from pz zð Þ to the original data space v,
and the discriminator would output a single score 2 0;1½ � to indicate
whether the current data are from the generator or not. Generally, a
small score indicates the current data generated by the generator,
while a high score indicates the current data coming from the orig-
inal dataset. We repeat this training process until both the discrim-
inator and the generator reach to the Nash equilibrium [8] where
pG ¼ pr ¼ 0:5.

Eq. (1) measures the difference between prðxÞ and pG zð Þ by using
the Jensen–Shannon (JS) divergence [10]. The closer the two distri-
butions are, the smaller the JS divergence is. However, we cannot
guarantee that the two probability distributions (pG zð Þ and pr xð Þ)
have a large overlapping area because pG zð Þ and pr xð Þ lie in low-
dimensional manifolds [3,4]. That is to say, the two distributions
are hard to overlap because they are disjoint in v space. If the over-
lapping area is none or very small, the overlapping measure
between pG zð Þ and pr xð Þ is 0 and the JS divergence is a constant
(e.g., log2). The gradients are vanishing under such a scenario. Note
that pG zð Þ is defined via sampling from the simple prior pz zð Þ [3].
This implicitly indicates that we can utilize prior pz zð Þ to increase
the overlapping area.

3.2. The limited diversity

In general, the noise distribution pz zð Þ is a fixed, easy-to-sample
distribution, i.e., Uniform with (�1, 1) or Gaussian with (0, 1). The
model usually adopts independent identically distributed strategy
to draw noise code z from such an distribution, and transform it
into high-dimensional matrix (G zð Þ). Let G be a function composed
by affine transformations and rectifiers. We get
G zð Þ ¼ DnWn . . .D1W1zwhereWi denotes the affine transformation
and Di indicates the rectifier. Note that the noise code z follows the
distribution pz zð Þ and the generated data Gz follows distribution
pG zð Þ. In this way, pz zð Þ is contained in pG zð Þ.

With this in place, the diversity of generated data Gz has been
limited by such a low-dimensional noise code when GAN model
has been trained successfully because the number of noise code z



Fig. 3. Assuming original data (red curve) hold 6 submanifolds, while MoG model (green curve) just covers part of submanifolds of original data.
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is limited. One may want to increase the dimensionality by
increasing the number of noise samples (e.g., z ¼ 10 ! z ¼ 100).
However, these noise samples could be linear correlation so the
intrinsic dimensionality of those noise samples is far less than
100. It further increases the loss of diversity as we consider such
a scenario where the neural network brings the dimensionality
reduction mapping.

On the other hand, assuming the original data holds a set of dis-
joint manifolds and each one named submanifoldi, a part of man-
ifolds of original data are covered by the support of the
generated data distribution. This is because pz zð Þ is supported on
a connected subspace of v while pz zð Þ is contained in pG zð Þ. There-
fore, generator G (a continuous function by design) can not cor-
rectly model a set of disjoint manifolds in v [23]. Although there
is a trade-off between covering all original data distribution and
minimizing the volume of the off real-manifold space in the cover,
such a trade-off also indicates that the generator may sacrifice cer-
tain submanifolds to learn a cover with less off real-manifold vol-
ume [23]. In this way, the diversity of the generated data is limited.

In addition, there is a lower bound for intrinsic dimensionality
of a dataset [48], the diversity of data will be lost when the intrin-
sic dimensionality of generated data is smaller than such a lower
bound. It is much worse on diversity when the training data sam-
ples are extremely limited and diverse (See Fig. 2).
3.3. Reparameterization method

In the traditional sampling method, the lower bound of the
noise variable is fixed, e.g., Uniform with (�1, 1) or Gaussian with
(0, 1). The reparameterization method can help us to determine the
lower bound of the variable through back-propagation. For exam-
ple, we want to take the gradient w.r.t. h of the following expecta-
tion Ep zð Þf h zð Þ where p denotes the density. However, computing
the gradient of this expectation (i.e., rhEph zð Þf h zð Þ) is often difficult
because the integral is typically unknown and the parameters h,
with respect to which we are computing the gradient, are of the
distribution ph zð Þ. The reparameterisation method can ‘‘transform”
this formula to another expression, i.e., rhEph zð Þf h zð Þ =
rhEp� f g �; hð Þð Þ. In this way, the gradient is now unrelated to the
distribution with which we take the expectation, so easily passes
through the integral. We take the Gaussian distribution as the
example. The sample can be represented from the Gaussian as a
deterministic function of l and d and an auxiliary noise variable
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�, i.e., z ¼ lþ d�, and we can learn the parameters l and d along
with the GAN parameters.

4. Joint distribution GAN

In this section, we propose the Joint Distribution GAN (JDGAN).
As mentioned in the introduction, the innovation of JDGAN lies in
the input randomized space Z, which modifies Z with joint of mul-
tiple independent distributions. To this end, there are four impor-
tant issues to be addressed, which are how to construct a new
randomized space using joint distribution, how to draw samples
from the joint distribution, how to choose the number of distribu-
tions and how to learn the parameters of JDGAN.

4.1. Constructing the new randomized space

No matter which GAN-based model we choose, we always hope
the network to learn a mapping from the latent distribution pz zð Þ
to the original data distribution pr xð Þ. In our study, we employ joint
distribution to construct the randomized space for the generator.
In joint distribution, the distribution of the random vector
Z ¼ Z1; Z2; . . . ; Znð Þ is named joint distribution of the random vari-
able Zi, and it is shown as follows.

P Zð Þ ¼ P Z1 ¼ z1 and Z2 ¼ z2 and . . . and Zn ¼ znð Þ ð2Þ
In Eq. (4), each zi indicates a distribution. The joint distribution

of multiple variables can be generally represented as follows:

pz zð Þ ¼ pz z1; z2; . . . ; znð Þ ¼ pz z1ð Þpz z2ð Þ . . .pz znð Þ ð3Þ
Here we assume that each distribution is independent of all the

others, Eq. (3) can be reformulated as follows:

pz zð Þ ¼ p z1; z2; . . . ; zNjh1; h2; . . . ; hNð Þ
¼ p z1jhz1 ; z2jhz2 ; . . . zN jhzN

� �
¼ p z1jhz1

� � � :: � p zijhzi
� � � :: � p znjhznð Þ ¼

Yn
i

P zijhzi
� � ð4Þ

In this way, pG zð Þ which is the generating distribution parame-
terized by the generator should be a larger and more complicated
distribution, so the overlapping area between pr xð Þ and pG zð Þ is
increased. Moreover, the increasing distributions also increase
the dimensionality of manifold, so the diversity of the generated
data can also be increased. This is because adopting the joint distri-
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bution can construct a more complex pz zð Þ. Since the supports of
pG zð Þ and pr xð Þ lie on low-dimensional manifolds [3], we attempt
to increase the dimension of manifold of pG zð Þ to overlap pr xð Þ,
given that pz zð Þ has to be contained in pG zð Þ [3]. If the dimension
of manifold of pG zð Þ is no longer less than that of pr xð Þ, it is certainly
for pr xð Þ to be completely covered by pG zð Þ in the mapping space.
Assuming an extreme scenario, pG zð Þ is complicated enough to fill
up the mapping space. That is to say, pr xð Þ and pG zð Þ have non-
disjoint supports. In this way, the diversity of the generated data
can be guaranteed.

Since the JDGAN focuses on constructing the joint distribution
to modify the randomized space Z, the generator and discriminator
architectures of JDGAN are from the vanilla DCGAN. The details of
components still adopt Conv-BatchNorm-ReLu (Generator G) and
Conv-BatchNorm-LeakyReLu (Discriminator D). One may use other
frameworks given that the designing of randomized space Z is
independent of the architectures. Even though the common archi-
tectures are utilized, JDGAN is demonstrated to be more effective
than state-of-the-art variants of GAN. More details are shown in
the experiment section.

Next,we discuss how to choose each distribution (i.e., P zijhzi
� �

) to
formthe jointdistribution for constructing randomizedspaceZ. The-
oretically,we can use any statistical distribution (even the samedis-
tribution) to jointlyconstructZ, andwhatweneed topayattention to
is that thosedistributionshavetobe independent toeachotherwhen
employingmultipledistributions(wewillconsiderthecaseofdepen-
dent jointdistribution in futurework). In fact,manydistributionscan
be viewed as the combination of the Gaussian distributions and the
Uniformdistributions [19], andbothof themarewidelyused inmany
applications. Here we take the two distributions as the example to
construct the randomized space. One can try to use other distribu-
tions, basedondifferent tasks.We instantiateEq. (4) via the jointdis-
tribution of a Gaussian distribution and a Uniform distribution as
shown in the following equation:

pz zð Þ ¼ p z1; z2ð Þ ¼ p z1jG l; dð Þð Þp z2jU a; bð Þð Þ; ð5Þ
By Eq. (5), the joining of two distributions belongs to non-linear

combination, which increases the power of prior distribution. It is
highly likely to produce a larger overlapping area than a single one
and the joining of two distributions significantly increases the
diversity. Next, we will introduce how to sample noise from the
new randomized space.

4.2. Sampling from joint distribution

Wetake theEq. (5) as the example. In Eq. (5), thenewrandomized
space has been determined by two different distributions (p z1ð Þ fol-
lows the Gaussian distribution and p z2ð Þ follows the Uniform distri-
bution). In order to draw noise code z from Eq. (5), we employ the
‘‘reparameterizationmethod” [25] to sample noise code z1 from the
Gaussian distribution and use the inverse transformation method
[43] with the cumulative distribution function (x�a

b�a) to sample noise
code z2 from the Uniform distribution. Since we repeatedly sample
noise code from the two distributions and both of the two distribu-
tions are univariate Gaussian distribution and uniform distribution,
all the elements of z are not the same and each elementwithin noise
codeisascalar. Inthisway, thenoisecodedrawnfromthejointdistri-
bution can be denoted as follows:

z ¼ lþ deð Þ f b� að Þ þ a½ � ð6Þ
In Eq. (6), the first term follows the standard Gaussian and the

second term follows the standard Uniform distributions respec-
tively, which means that the data we sampled from the random-
ized space Z are a deterministic function of the parameters of
l; d; b and a. Substituting Eqs. (6) and (5), we get:
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Pr G zð Þð Þ ¼
Z

pr G lþ deð Þje½ �p eð Þde

�
Z

pr G f b� að Þ þ að Þjf½ �p fð Þdf ð7Þ

In this way, our new objective is to learn l; d; b and a together
with the generator to minimize Ez�pz zð Þ log 1� D G zð Þð Þð Þ½ �, and the
architecture of JDGAN is shown in Fig. 4.
4.3. Learning parameters of JDGAN

For each distribution, we first need to initialize their parame-
ters. We still take the Eq. (6) as the example. We initialize li and
di with 0 and 1 for p z1ð Þ and assign (-1, 1) to p z2ð Þ (a and b). In order
to train our model, generator samples a latent vector z from the
joint distribution (Eq. (6)). After feeding z into the generator, we
obtain the generated data and then put these data into discrimina-
tor. The discriminator would output a signal to update generator’s
parameters by using regular GAN training procedure (Eq. (1)). Also,
l; d; a and b are trained simultaneously along with the generator’s
parameters, with gradient methods. The derivative with respect to
each parameter is easy to obtain using the back-propagation
method (e.g., @G

@l = @G
@z � @z

@l).
4.4. Determining the number of distributions

The goal of jointly employing multiple distributions in the ran-
domized space is to increase the generating capabilities. However,
we need to know how to choose the optimal number of multiple
distributions. In this paper, the Intrinsic Dimension [2,29] is utilized
to determine the number of distributions. A dataset is usually pro-
jected into a low-dimensional manifold, and the minimal dimen-
sion of such a manifold is called intrinsic dimension [2]. Assume
there exist independent identically distributed (IID) sample obser-
vations X1; . . . ;Xn from a high-dimensional space RD, and those
observations represent an embedding of lower-dimensional sam-
ples, i.e., Xi ¼ g Yið Þ. Yi is from an unknown smooth density f on
Rm with m < D. The unknown term m is the expected intrinsic
dimension. Here, we utilize widely used maximum likelihood [29]
to estimate intrinsic dimension, which is shown in Eq. (8).
bm xð Þ ¼ 1
n

Xn

j¼1

log
xj

Tj xð Þ

" #�1

ð8Þ
where Tj xð Þ is the Euclidean distance from the point x to its jth near-
est neighbor. More deductions are shown in [29]. We take the extre-
mely limited MNIST as the example to demonstrate the optimal
number of distributions. We feed the extremely limited training
samples and generated instances from DCGAN (See Fig. 2(a)) into
Eq. (8), and get bm xð ÞDCGAN ¼ 3:30, bm xð ÞMNIST ¼ 5:79. In this way,
two distributions may be the optimal choice in our cases. A detailed
discussion is shown in experiment section.

Besides, we observe in our experiments that a larger number
not always brings better performance. The reason behind it could
be as follows. If the number of distributions is large, it can cause
that the noise distribution is more complicated than the raw data
distribution. In other words, a GAN model transforms a compli-
cated distribution into a relatively simpler distribution, and such
a transformation process could abandon some valuable informa-
tion for mapping the former one into the latter one, which would
cause the loss of diversity.
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Fig. 4. JDGAN architecture. Different from the regular GAN model, the generator samples noise from the joint distribution. The Platent zð Þ is made up of multiple distributions
(zi). Those distributions are independent to each other.
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Fig. 5. Architectural details of JDGAN model. ‘‘K � K , conv/deconv, C, stride = S” denotes a convolutional/deconvolutional layer with K � K kernel, C output filters and
stride = S. BN indicates a batch normalization layer. 10 indicates the dimension of z. In Mass Spectrometry (MS) dataset, the out channel at the last layer for generator is set to
6, for 6 features (Acq Time, Intensity, Precursor Intensity Acquisition, Apex Time, Elution Peak Width, MS2Counts) can determine whether the eyes are diseased or not.
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5. Empirical evaluation

5.1. Experiment settings

For the experiments, the implementation details of JDGAN are
shown in Fig. 5. Six recent GAN models are employed as baselines,
which are DCGAN [1], WGAN [4], MGAN [20], LSGAN [34], RaGAN
[22] and DeLiGAN [17], respectively.

Two commonly used public image datasets, the MNIST dataset
and the CIFAR-10 dataset, and a real-word medical Mass Spectrom-
etry dataset, are studied. JDGAN is proposed to enhance the capa-
bilities of capturing complicated data distribution. We thus mainly
compare the diversity of generated images with these GAN-based
models. Since deep neural networks can theoretically approximate
any kind of distributions with adequate training data, we reduce
the amount of data so as to test how many benefits the designed
JDGAN can bring. However, it is not easy to justify how limited
the data should be. In this way, we study diverse and extremely
limited data which means there are many categories of images
but each category holds only one image because no more data
can further be reduced. To make a fair comparison, the quantity
of generated data for all models is the same as that of training data
(10 samples for image dataset and 5 samples for medical dataset).

5.2. MNIST dataset

We first generate image simulation data using JDGAN on MNIST
dataset where each sample is a gray image with 1*28*28 size. We
sample only one image from each category as the training data, and
the hyperparameters are shown in Fig. 5. In Fig. 5, we use the Adam
gradient method [24] and Binary Cross Entropy [28] to update the
generator and the discriminator and the multiple distribution’s
154
parameters (e.g., l; d; b and a). We set the parameter of LeakyRelu
[45] as 0.02 and that of Dropout [40] as 0.5. The activation of last
layer for the generator and the discriminator is Sigmoid for MNIST
and MS datasets, and that is Tanh for CIFAR-10 dataset.

We then test the number of distributions in Z from 2 to 4 and
the drawing noise samples from only multiple Gaussian distribu-
tions (z ¼ lþ de1ð Þ � . . . � lþ denð Þ) and only multiple Uniform
distributions (z ¼ f1 b� að Þ þ að Þ � . . . � fn b� að Þ þ að Þ) which are
used to form the joint distribution in Z, and the generated results
are shown in Table 2. Note that all parameters a; b have been ini-
tialized to (�1, 1) and all parameters l and d have been initialized
to (0, 1). After that, we incorporate the two distributions (Eq. (7))
into a joint distribution, and the results are shown in Table 3. Note
that we have already studied all the baselines on this dataset, and
the results shown in Fig. 2 demonstrate poor performance of all the
baselines. We now report the Fréchet Inception Distance (FID)
[18,32] scores obtained by our JDGAN (Row 1 and column1 in
Table 3) and baselines (Fig. 2) in Table 1 on MNIST dataset. FID
measures the Fréchet distance between the two distributions and
it is the 2-Wasserstein distance. The smaller the FID score is, the
better performance the model holds. From Table 1, we can see that
the JDGAN achieves the smallest score, which also proves that the
proposed JDGAN outperforms other GAN variants.

The three sets of results demonstrate the effectiveness of our
proposed JDGAN. In addition, there is an interesting scenario
where the diversity is decreasing when the number of distributions
is increasing. Note that when employing a large number of distri-
butions to construct the randomized space, the noise distribution
could be more complicated than original data distribution. We
think it may be because the noise’s diversity is richer under this
scenario, and the generator may abandon some values during
training when the GAN model transforms a complicated



Table 1
FID scores of generated data shown in Fig. 2
and Row 1, column1 in Table 3.

Models FID Score

DCGAN 202.1
DeLiGAN 106.3
LSGAN 266.5
WGAN 179.4
RaGAN 290.3
MGAN 401.8
JDGAN 66.2

Table 3
We jointly employ multiple Uniform and Gaussian distributions. The number = 1
indicates that the joint distribution is determined by a Uniform and a Gaussian (Eq.
(6)), and number = 2 indicates that the joint distribution is determined by two
Uniform distributions and two Gaussian distributions. The best performance is
achieved with the number = 1 and number = 2, for they show the promising diversity.

Table 2
We jointly employ multiple Gaussian distributions (Simulation Data1) or Uniform
distributions (Simulation Data2). The number = 2 indicates that we employ two same
distributions to construct Z. The best performance is achieved with the number = 2 as
the randomized space is constructed by 2 Gaussian distributions, for the diversity
outperforms others.
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distribution into an relatively simpler distribution. The abandoned
values would cause incomplete information, which may be a part
of a handwritten figure. Thus, to fool the discriminator, the gener-
ator easily tends to generate the ‘‘realistic” but repeated simulated
data rather than the ‘‘unrealistic” but diverse instances. Thus, a
suitable number is 2 for the MNIST dataset in this scenario.
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Previous experiments present a visual evaluation of the gener-
ation and show that all the baselines suffer from the mode collapse
problem. To further examine the advantage of our idea, we present
the overlapping area between the generating distribution and the
raw data distribution in Fig. 6 . It shows that JDAGN has the largest
overlapping area with the raw data distribution and thus suffers
the least from the mode collapse.

We also conduct experiments to validate the non-negligible
overlapping area at the early step, and the result is shown in
Fig. 7. Fig. 7 shows that the overlapping area between the distribu-
tion of simulated data generated by JDGAN (Eq. (6)) and that of
original data is considerably large while it is not the case with all
the baselines.

Notice that all the experiments shown above are conducted on
the scenario with diverse and extremely data. To validate the gen-
eralization of proposed JDGAN, we test its performance on other
scenarios.

1. We apply our proposed JDGAN to the adequate training data
(60000 figure samples) and compare it with the state-of-the-
art GAN variants. The generated images are shown in Fig. 8. It
shows that the proposed JDGAN can also achieve good perfor-
mance with adequate training samples.

2. The training dataset is imbalanced dataset. On this scenario, the
category ‘0’ holds 8 samples, the categories ‘1’ and ‘2’ hold 1
sample. The results are shown in Fig. 9. The generated data pro-
duced by JDGAN are diverse because the three categories are
arisen while DeLiGAN lacks category ‘2’.

In this case, the experimental results show the effectiveness of
JDGAN in extremely limited data. Next, we proceed to apply the
JDGAN to the CIFAR10 dataset.
5.3. CIFAR-10 dataset

The CIFAR-10 dataset is a colorful image dataset with 3*32*32
size. We continue to apply JDGAN to this dataset, and the architec-
tural details are the same as the Fig. 5 except for the last layer of
the generator, which replaces Sigmoid with Tanh, given that the
CIFAR-10 dataset is colorful dataset and the Tanh function can
cover the color space of the training distribution. We set the noise
distribution as the Gaussian distribution (0, 1) for DCGAN [1],
WGAN [4], RaGAN [22], MGAN [20] and LSGAN [34], and sample
noise samples from the Mixture-of-Gaussians model for DeLiGAN
[17]. For MGAN, we employ 10 generators and each one only pro-
duces one instance. Similar to MNIST dataset, we still samples 10
images from CIFAR10 dataset, and each image represents a specific
category. The generated images of different models are shown in
Fig. 10. From these generated data, we can see that there are many
identical images in sub-figures (a), (b), (d) and (f), and we even
observe the noise generated images in sub-figures (c), (d) and (f).

Similar to MNIST, we continue to construct the randomized
space Z by using only multiple Gaussian distributions, only multi-
ple Uniform distributions and the joint distribution of these two
distributions respectively. The generated results are shown in
Tables 4 and 5, respectively.

We can see that the best performance is achieved with the
number = 3 in Table 4 when the randomized space is determined
by three same distributions, and that is achieved with the num-
ber = 2 in Table 5 if the randomized space is determined by two dif-
ferent distributions.

We think that the information possessed by CIFAR-10 dataset is
richer than MNIST dataset, and there is a need to sample noise
from a more complicated distribution for the generator to capture



Fig. 7. The overlapping area on the MNIST dataset at the early step. The blue line indicates the original data distribution, and other lines indicate the simulated data
distribution, which are generated by LSGAN, WGAN, RaGAN DeLiGAN, MGAN and JDGAN respectively. Only JDGAN holds a non-negligible overlapping area.

Fig. 6. The overlapping area on the MNIST dataset. The blue line indicates the original data distribution, and other lines indicate the simulated data distribution, which are
generated by LSGAN, WGAN, DCGAN, RaGAN, MGAN and JDGAN respectively. JDGAN holds the largest overlapping area. Here we use the plt:histðÞ and MLA:normpdf ðÞ
functions with bins ¼ 10 to plot their histograms.
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more diverse distributions. Similar to the MNIST dataset, the more
distributions could also cause generating identical simulated
images, for transforming complicated distributions into a relatively
simpler distribution could abandon some information of diversity.
As for less distributions (e.g., number = 2 in Table 4), such a com-
bination cannot satisfy the rich diversity and the overlapping area
could not be enough, thus, the generator tends to generate ‘‘realis-
tic” but identical simulation images. In conclusion, we recommend
the number of distributions as two different distributions. We now
report the Fréchet Inception Distance (FID) scores obtained by our
JDGAN (Row 1 in Table 5) and baselines (Fig. 10) in Table 6. From
Table 6, we can observe that the JDGAN still achieves the smallest
score, which further proves the elimination of mode collapse for
JDGAN.

Moreover, we compare JDGAN with other GAN-based models
on the overlapping area, and the results are shown in Fig. 11. It
clear shows that the generating distribution produced by JDGAN
156
holds the largest overlapping area with the original data
distribution.

We also test its performance on adequate CIFAR10 training
samples (50000 images), and the generated images are shown in
Fig. 12. The experimental results further show the effectiveness
of JDGAN.

5.4. Other distributions

The Uniform distribution and Gaussian distribution are the
most common distributions in statistics, so they are widely used
in many GAN variants (e.g, Uniform for the vanilla GAN and
DCGAN, Gaussian for the LSGAN and WGAN). To validate the per-
formance of proposed JDGAN on other distributions, we employ
the Cauchy distribution, Exponential distribution, Uniform distri-
bution and Gaussian distribution to form the joint distribution,
and samples noise code Z from this joint distribution. According



(a) DCGAN (b) LSGAN (c) WGAN

(d) RaGAN (e) MGAN (f) JDGAN

Fig. 8. Generated images produced by baselines and JDGAN on adequate MNIST training samples.

Fig. 9. Sub-figure (a) indicates the training data, and sub-figure (b) indicates the generated data produced by JDGAN. Sub-figure (c) shows the generated data produced by
DeLiGAN.
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to the previous experimental results, we form the joint distribu-
tions of Cauchy and Exponential, Cauchy and Exponential and Uni-
form, Cauchy and Exponential and Uniform and Gaussian to
construct the latent space. In this case, the training data is still
the extremely limited samples, and the generated results are
shown in Table 7. From Table 7, we can see that the best perfor-
mance is still in the case of number = 2, larger number resulting
in identical instances. We compare the FID score of combination
of Cauchy and Exponential (FIDCE) with that of combination of
Gaussian and Uniform (FIDGU), we get FIDCE on MNIST and CIFAR10
are 101.4 and 352.1 respectively, which are larger than FIDGU 66.2
and 310.8. In this way, the combination of Uniform and Gaussian
could be the better choice in our cases.

5.5. Mass spectrometry dataset

Protein is highly complex biochemical entity, and is present in
all living organisms. Proteins are the downstream products from
genes which carry out almost all essential biological and chemical
functions in a living body. Primary structure of a protein is
157
determined by the sequence of specific amino acids (peptide). In
recent years, mass spectrometry has become the core analytical
technique in studying protein identification and quantification
[38]. Mass spectrometry works by ionizing chemical compounds
to generate charged molecules or molecule fragments and measur-
ing their mass to charge ratios (m/z). The generated peak spectra
reflect the identification and abundance of a specific protein.

In a typical tandem mass spectrometry (MS/MS) experiment,
protein mixture is digested by an enzyme into smaller peptides.
The sample peptides are then ionized and subjected to MS. As a
medical dataset, the main problem is that enough available data
collection could be expensive and unrealistic (here we just hold
5 patients and the number of peptide in each patient is 74552).
Thus, we hope to use the generative model to generate more sim-
ulation data to supplement the original data. We then apply our
proposed JDGAN (Eq. (6)) to MS dataset, and the hyper parameters
are shown in the right part of Fig. 5. Although there are many fea-
tures for each patient, we just pick up 6 features (Acq Time, Inten-
sity, Precursor Intensity Acquisition, Apex Time, Elution Peak
Width, MS2Counts) because the 6 features correlate to the



Table 4
We jointly employ multiple Gaussian distributions (Simulation Data1) and multiple
Uniform distributions (Simulation Data2). The best performance is achieved with the
number = 3, which means we employing three same distributions to construct Z.

(a) DCGAN (b) LSGAN (c) WGAN

(d) RaGAN (e) DeLiGAN (f) MGAN

Fig. 10. The generated images are produced by DCGAN, LSGAN, WGAN, RaGAN, DeLiGAN and MGAN, respectively. In this case, the training data only contain 10 samples, and
each one represents a specific category. The generator samples noise from standard Gaussian distribution (0, 1) for DCGAN, LSGAN, WGAN, RaGAN and MGAN, and samples
noise from a Mixture-of-Gaussians model for DeLiGAN.

Table 6
FID scores of generated data shown in Fig. 10.

Models FID Score

DCGAN 389.6
DeLiGAN 381.9
LSGAN 436.7
WGAN 444.3
RaGAN 453.3
MGAN 456.7
JDGAN 310.8
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differential protein expressions under different biological condi-
tions. In most of the cases, between healthy and disease conditions.

The results are shown in Fig. 13. In Fig. 13, the blue line indi-
cates the threshold, which is a group of mean values calculated
Table 5
We jointly employ multiple Uniform and Gaussian distributions, and the best
performance is achieved with the number = 1.
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by the healthy proteomic values and diseased proteomic values.
In most cases, a proteomic value is below the threshold if this pro-
teomic value belongs to the healthy set, while a proteomic value is
larger than the threshold as the proteomic value belongs to the dis-
eased set. The red points and green points are simulation data gen-
erated by JDGAN, we can see that most simulation data are below
the threshold as they belong to healthy set and that are above the
threshold as they belong to the diseased set.
5.6. Discussion

In fact, it is hard to obtain the original data distribution. It
becomes even harder for extremely limited data with rich informa-
tion (e.g., many categories, color or shape information, pixel
details). Let pz ! z and pr ! x where the dash line indicates model
drawing samples from a certain distribution. In the traditional GAN
generating mechanism, G always specializes in z # x. Considering
pz zð Þ is contained in pG zð Þ, the generated data distribution cannot
be complicated to match the original data distribution completely.
Under such a scenario, the generated data diversity cannot be guar-
anteed. JDGAN increases the diversity of generated instances by
employing the joint distribution to construct the randomized
space. See Figs. 2 and 10.

Note that the crucial point of JDGAN is how to determine the
number of distributions. In this paper, we utilize the Intrinsic
Dimension strategy to evaluate the Intrinsic Dimensions of raw data
and generated data, because the Intrinsic Dimension can loyally
reflect the minimal dimension of data manifold [29]. By calculating
the Intrinsic Dimensions of raw data and generated data (Fig. 2(a))
with Eq. (8), we get bm xð Þraw data ¼ 5:79 and bm xð Þgenerated data ¼ 3:30.
This suggests that two distributions may be the optimal choice in



Fig. 11. The overlapping area on CIFAR-10 dataset. The blue line indicates the original data distribution, other lines indicate the simulated data distribution, which are
generated by LSGAN, WGAN, RaGAN, MGAN, DCGAN and JDGAN respectively. Only JDGAN holds the largest overlapping area.
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our cases, and greater or less than this number would decrease the
performance. We still use Eq. (8) to calculate the Intrinsic Dimen-
sions of synthetic data produced by JDGAN (Table 5 row1), and
get bm xð Þsynthetic data ¼ 5:73, which is very close to that of raw data.
Under such a scenario, the generated distribution is closer to orig-
inal data distribution (See Figs. 6 and 11), and the diversity of gen-
erated data can also be guaranteed (See Tables 2, 3–5 and 7).
(a) DCGAN (b) LSGA

(d) RaGAN (e) MGA

Fig. 12. Generated images produced by GAN variants a
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6. Conclusion

In this paper, instead of modifying the framework of a GAN
model, we explore another direction, which is to modify the ran-
domized space by jointly employing multiple distributions and
learn these distributions together with the generator with repa-
rameterization method, to increase the diversity of simulated data
N (c) WGAN

N (f) JDGAN

nd JDGAN on adequate CIFAR10 training samples.



Table 7
Number = 2 indicates that one single Cauchy and one single Exponential are
employed; number = 3 indicates that one single Cauchy, one single Exponential and
one single Uniform are employed; number = 4 indicates that one single Cauchy, one
single Exponential, one single Uniform and one single Gaussian are employed.
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and the overlapping area between the raw data distribution and
the generating distribution. Also, we explore how to combine these
distributions and display the different performance on different
numbers of distributions. Specifically, we jointly employ only mul-
tiple Gaussian distributions, only multiple Uniform distributions
and the mixture of two distributions respectively, and test each
performance. We conducted extensive experiments with MNIST
and CIFAR-10 as well as mass spectrometry datasets to validate
our proposed JDGAN. The results have shown that our approach
is effective and better than other GAN-based models.
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included by peptide, which can distinguish whether the peptides within a biological tis
below the threshold, or diseased as the proteomic value is larger than the threshold.
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