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Original data usually lies on a set of disconnected manifolds rather than a smooth connected manifold.
This causes the problem of mode collapse in the training of vanilla Generative Adversarial Network
(GAN). There are many existing GAN variants that attempt to address this problem, but they result
in limitations. The existing variants either produce simulated instances with low quality or generate
identical simulated instances. In this study, we propose a new approach to training GAN utilizing
multiple generators, a classifier and a discriminator to address mode collapse. The classifier outputs
the statistical probabilities of generated data belonging to a specific category. These probabilities
implicitly reflect which manifolds are captured by generators, and the correlation between generators
is quantified by mutual information. Our idea views the mutual information values as a constraint to
guide generators in learning different manifolds. Specifically, we traverse the generators, calculating
the mutual information between each generator and the others. The calculated values are integrated
into the generator loss to form a new generator loss and to update the corresponding generator’s
parameters, using back-propagation. We minimize the mutual information to reduce the correlation
between generators while also minimizing the generator loss. This ensures generators capture different
manifolds while updating their parameters. A new minimax formula is established to train our
approach in a similar spirit to vanilla GAN. We term our approach Mutual Information Multi-generator
GAN (MIM-GAN). We conduct extensive experiments utilizing the MNIST, CIFAR10 and CelebA datasets
to demonstrate the significant performance improvement of MIM-GAN in both achieving the highest
Inception Scores and producing diverse generated data at different resolutions.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Generative Adversarial Network (GAN) [1] has been drawing
uch attention in the Deep Learning community due to its pow-
rful generative capabilities [2–5]. A typical GAN model consists
f two components, a discriminator D and a generator G. The

discriminator D estimates a probability that a sample came from
the training data rather than the generator G. The generator
G specializes in generating simulated samples to fool D into
accepting these samples as real. The GAN model sidesteps the
difficulty of approximating many intractable probabilistic com-
putations; it samples data from an easy-to-sample distribution
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so that Markov chains are unnecessary. Its gradients are tuned
using back-propagation, which makes the training computation-
ally inexpensive. Although GAN is successfully applied to many
applications [6–8], training a GAN is still a challenge because it
can easily fall into the problem of mode collapse.

Real datasets generally hold a set of disconnected manifolds
[9]. However, the ReLU activation function [10] adopted by the
generator G always outputs a continuous, piece-wise linear map-
ping [11]. In other words, the continuous generator seeks to
find a discontinuous mapping in a specific space. Without ReLU
activation, the GAN is unable to learn the non-linear information
of the original data [12]. This intrinsic conflict renders the GAN
model unable to converge or to converge to one continuous
branch of the mapping, causing mode collapse [11]. The vanilla
GAN has no strategy to prevent such a scenario. This is because
the major task of G is to fool the discriminator into accepting

the generated instances as real. D only outputs a probability that
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stimates whether a sample is from the original dataset or not.
aturally, G can find success producing data only from specific

manifolds, and there is no mechanism in place to prevent it from
doing so.

Mode collapse in GAN indicates that: (1) only one or several
manifolds of original data are learned — most of the manifolds
are missing; (2) generated samples have identical instances. See
Fig. 1 for a less formal, more pedagogical illustration of mode
collapse. Many GAN variants have been developed to address this
problem, however, they have respective limitations. Wasserstein
GAN (WGAN) [13] adopts Wasserstein distance to measure the
dissimilarity between the original data distribution (pr ) and the
generated data distribution (pG). However, the weight clipping
ethod adopted by WGAN results in optimization difficulties and

he inevitability of information loss, causing a capacity underuse
ssue [14]. Spectral Normalization GAN (SN-GAN) [15] adopts
pectral normalization (λ) to make the discriminator Lipschitz
ontinuous. This allows it to reserve the weight array (W ) in-
formation to the greatest extent by using W

√
λ
. However, SN-GAN

requires all layers of the discriminator to satisfy Lipshitz continu-
ity. Such a strategy causes the generated objects to take the same
color. This can be viewed as a manifestation of the mode collapse
problem.

Recent works, motivated by the limitations of a single gen-
erator for learning multiple disconnected manifolds, attempt to
employ multiple generators to learn all manifolds. Multiple Gen-
erators GAN (MGAN) [16] employs a mixture of generators and
adopts a ‘‘shared parameters" strategy to simultaneously train
all generators. Each time MGAN chooses a generator Gµ (µ in-
icates the generator id) and assumes µ follows multinomial
istribution. Then, Gµ(z) is used as the output. The discrimina-
or D aims to distinguish between this output and the training
amples. However, the ‘‘shared parameters" strategy results in
he tendency of generators to learn the same manifolds as each
ther. Under such a scenario, MGAN produces identical generated
nstances. The Disconnected Manifold Learning GAN with Prior
earning (DMGAN-PL) [9] model chooses to learn the prior (p(c))
ver generators with an extra network (Q ) rather than a fixed
istribution (e.g., multinomial), and this model abandons the
‘shared parameters" strategy. Although prior learning is more
uitable for fitting the distribution over generators, the process
f prior learning is quite complicated and needs to consume a lot
f computational resources. A less effectively trained network (Q )
ends to cause DMGAN-PL model to produce synthetic instances
ith low quality. We can observe the details in the experiments
ection. Considering the significance of the challenges of the
forementioned models and the potential benefits of overcoming
hem, it is worth developing a new approach to address the mode
ollapse problem.
In this paper, we propose a new approach to training multi-

enerator GAN. Our approach is formulated as a minimax game
mong three parties: a set of generators G1:n, a classifier C and a
iscriminator D. Generators G1:n produce synthetic instances that
re intended to come from the same distribution as the training
ata, the discriminator D determines whether samples are true
ata or generated by generators, and the classifier C produces the
tatistical probabilities that generated data belongs to a specific
ategory. The probabilities implicitly reflect which manifolds are
aptured by generators. As opposed to maximizing the corre-
ation between generator id and generated instances as shown
n the above multi-generator GAN variants, we minimize the
orrelation between generators with mutual information [17] to
uide generators in learning different manifolds. Specifically, we
ravel over the generators and calculate the mutual information
alues between each generator and the others using statistical
2

robabilities. The calculated values are integrated into the gen-
rator loss to form a new generator loss and utilized to update
he corresponding generator’s parameters with back-propagation.
ince the mutual information consists of the correlation between
ach generator and the others, a generator’s loss is implicitly
ware of the information captured by other generators. We min-
mize the mutual information to reduce the correlation between
enerators, along with minimizing the generator loss. This helps
enerators capture different manifolds while updating their pa-
ameters. Mutual information values closer to 0 reflect a lower
orrelation of data between two generators and a greater di-
ersity of information between them. In this way, we term our
pproach Mutual Information Multi-generator GAN (MIM-GAN),
nd a detailed discussion is shown in Section 4.
In summary, the main contributions of this study are shown

s follows:

• This paper proposes a new approach to training multi-
generator GAN with mutual information, enforcing mul-
tiple generators learning different manifolds of data and
overcoming the problem of mode collapse.
• This paper demonstrates how to learn different manifolds

by minimizing mutual information between generators from
both theoretical and empirical perspectives, providing new
insight into the success of MIM-GAN.
• Through comprehensive experiments on three public

datasets with different resolutions, we demonstrate the
effectiveness of our proposed approach.

The rest of this paper is organized as follows. In Section 2 ex-
sting works are discussed. In Section 3 we review the GAN model
nd mutual information. In Section 4 we discuss our proposed
IM-GAN. In Section 5 we show our experimental results. Lastly,
ection 6 serves as our conclusion.

. Related work

Mode collapse is a major obstacle to GAN and its variants,
nd many studies have been proposed to tackle the mode col-
apse problem. Here, we categorize these studies according to the
trategies they adopt.
Modifying Loss Function. Generator G learning one or several

anifolds is a case in which the generated data distribution can-
ot be completely matched to the original data distribution. Such
distribution mismatch is a joint consequence of the negligible
verlapping area and the JS divergence. JS divergence cannot
easure the difference between pr and pG when the two dis-

ributions have negligible overlapping area. In this way, many
esearchers focus on modifying the loss function to address mode
ollapse.
Wasserstein GAN [13] is a classical model and it adopts the
asserstein distance to measure the difference between pr and

G. In comparison to JS divergence, Wasserstein has a smoother
alue space and is better equipped to provide smooth repre-
entations of the distance in-between distributions in lower di-
ensional manifolds. [18]. For its approach to the Wasserstein
istance, WGAN adopts the Kantorovich–Rubinstein duality to
ransform the standard Wasserstein distance into a discriminator
unction (i.e., f ∗w(x)), and the 1-Lipshitz continuity can guarantee
this transformation. For satisfying 1-Lipshitz continuity, ∂ f ∗w (x)

∂x is
limited to a specific range (e.g., (−0.01, 0.01)), which is known
as weight clipping. The optimal strategy is either to take the
largest value (i.e., 0.01) or to take the smallest value (i.e., −0.01)
for all parameters under such a scenario. Weight clipping can
cause gradients to vanish when the window is too small and
weight clipping can slow convergence when the window is too
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Fig. 1. Illustrative example of continuous representation from latent space Z to original data space χ . The generator G(z) : Z → χ with prior z ∼ Gaussian(0, 1)
xpects to learn all manifolds of original data. Sub-figure (a) shows an example of learning a part of the manifolds, in which the red line indicates the manifolds
hile the blue curve indicates the learned manifolds by G. Generated results are shown in sub-figure (b) and they are identical.
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arge. Moreover, only certain optimizers (e.g., RMSProp or SGD) in
GAN are suitable for optimizing WGAN [13], and momentum
ased optimizers (e.g., Adam) may turn the gradients negative.
Takeru et al. [15] proposed a novel weight normalization

ethod to achieve the 1-Lipshitz continuity, termed spectral
ormalization GAN (SN-GAN). SN-GAN uses this spectral nor-
alization to control the Lipschitz constant of the discriminator

unction f . For calculating the spectral normalization, SN-GAN
dopts Singular Value Decomposition (SVD) to get the largest
ingular value and views this value as the spectral normaliza-
ion. SN-GAN uses Wij

√
λ1

to enforce the discriminator 1-Lipshitz
ontinuity in which λ1 indicates the largest singular value of

(weight matrix of discriminator) and Wij indicates a specific
lement within W . However, such a strategy does not completely
orrespond to penalizing the spectral norm [19]. Note that al-
hough the term Wij

√
λ1

helps model achieve 1-Lipshitz continuity,
it, in turn, limits the diversity of generated data, resulting in all
generated objects taking the same color. This case can also be
viewed as mode collapse.

Least Squares GAN (LSGAN) [20] argues that the Sigmoid Cross
Entropy loss function [21] is not suitable for training the dis-
criminator. Therefore, LSGAN uses Least Squares to measure the
difference between pr and pG rather than Sigmoid Cross Entropy.
he Least Squares measurement metric, however, still encounters
challenge when one of pG or pr → 0 and the other one ̸= 0
s both components (discriminator D and generator G) reach the
ptimal state. In this case, the loss function would be a constant
i.e., 1), and the constant cannot accurately reflect the real dif-
erence between pr and pG. The recent DMGAN [4] utilizes the
ombination of identity preserving loss and discriminative loss to
enerate synthetic samples with high quality. Still, the Inception
core of our proposed MIM-GAN (6.233) is higher than that of
MGAN (6.08). As for MS2GAN [5], it focuses on cross-modal
etrieval.

Modifying Architecture. Since manifolds of original data are
isconnected in the space and a single generator G only produces
nstances in certain regions of this space, the generated data is
ot focused on all of the manifolds. An alternative approach to
ddress this problem is to increase the quantity of generators in
n attempt to learn more about different manifolds. Tolstikhin
t al. [22] added a new component to a mixture model by running
GAN algorithm on a re-weighted sample. Inspired by boosting

echniques, this idea greedily aggregates many potentially weak
ndividual predictors to form a strong composite predictor. This
odel is termed AdaGAN. Since AdaGAN utilizes a sequential

raining technique to train the model, the model is computation-
lly expensive. Moreover, it is hard to search the Choose Mixture
eight and the Update Training Weight functions for boosting

echniques. Arora et al. [23], alternatively, trained a mixture of
generator and discriminators to play the minimax game with

he reward function being the weighted average reward function
3

etween any pair of generator and discriminator. This strategy is
ot only computationally expensive but also lacks a mechanism
o enforce the divergence among generators. Ghosh et al. [24]
mployed many generators and trained them by using multi-class
iscriminators that, in addition to detecting whether a sample is
ake or not, predict which generator produces this sample. The
oss function in this study focuses on detecting whether a sample
s fake and does not directly encourage generators to produce
iverse instances.
Hoang et al. [16] employed many generators G1:K in an effort

o overcome the mode collapse problem, and they named the
ethod MGAN. The K generators together induce a mixture over

K distributions pmodel in a specific space. Gµ(z) is the output in
which µ is the index and it follows a multinomial distribution.
The goal of MGAN is to minimize the JS-divergence between pmodel
and pr while maximizing the same divergence between each
generator, with shared parameters. An extra classifier C performs
a multi-class classification to determine whether the generated
samples, labeled by the index µ, are from the corresponding
generator. Although study [16] claims such a design can help a
model learn all manifolds, it is difficult to achieve this goal in
practice. MGAN does not provide that Gi is mutually exclusive
with Gj, i ̸= j. In other words, Gi and Gj may learn the same
anifold during training within the MGAN shared parameters
ethod. Despite the index (i or j in MGAN) following multinomial
istribution and elements within multinomial distribution being
utually exclusive, Gi and Gj are not necessarily mutually exclu-
ive. Therefore, MGAN cannot guarantee the elimination of mode
ollapse. Additionally, MGAN does not prove that the modified
oss function converges to an equilibrium. These issues cause
ode collapse in MGAN to be more serious.
Instead of fixing the distribution over generators, Mahyar

hayatkhoei et al. [9] proposed Disconnected Manifold Learning
AN with Prior Learning (DMGAN-PL). The DMGAN-PL model
tilizes an encoder network (Q ) to learn the index distribution
p(c)) over generators. As suggested by study [17], DMGAN-
L achieves this by maximizing the mutual information I(c; x)
etween generator id (c) and generated instances (x), because
MGAN-PL thinks that each generated sample should be a perfect
ndicator of which generator it came from. However, we cannot
uarantee that the maximal mutual information is obtained if
ach time the generated instances do not belong to generator Gc .
nder such a scenario, the generated instances have no relation
or less relation) to generator id, such that the generators may
till capture the same manifolds. In addition, learning p(c) with
a network is quite complicated and consumes undue compu-
tational resources. A less effectively trained network results in
the production of synthetic instances with low quality, given
that x follows pG(x|c). Based on these challenges, the DMGAN-PL
authors stress that their approach is not an attempt to achieve
optimal performance, but it is instead meant to highlight the
effectiveness of their approach for learning prior [9]. With the
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MGAN-PL model there exists room for improved methodologies
n addressing the mode collapse problem. This paper proposes a
ew approach to training multi-generator GAN.
Next, we discuss how to guide generators in learning the

isconnected manifolds with our proposed approach.

. Preliminaries

.1. Generative Adversarial Network

Although Generative Adversarial Network (GAN) [1] was in-
roduced in the first section, we formally describe it as follows
o establish continuity. GAN was developed by Goodfellow as a
ovel generative model to simultaneously train a generator G and
discriminator D using the following function:

min
G

max
D

V (G,D) = Ex∼pr (x)[logD(x)]

+ Ez∼pz (z)[log(1− D(G(z)))]
(1)

here D indicates the discriminator, G indicates the generator,
nd both are neural networks. x comes from a distribution pr (x)
nderlying the original dataset and z comes from a pre-defined
oise distribution pz(z) which is usually an easy-to-sample dis-
ribution, e.g., Uniform distribution with (-1, 1) or Gaussian dis-
ribution with (0, 1). The generator G outputs realistic instances
o fool the discriminator D into accepting the instances as real by
aximizing its score D(G(z)). This is achieved by the following
ptimization function.

min
G

V (G,D) = Ez∼pz (z)[log(1− D(G(z)))] (2)

Moreover, the discriminator D takes an input from either the
riginal dataset or the generator and produces a probability that
he input comes from the original dataset rather than G. In gen-
ral, the discriminator D strives to minimize the score it assigns
o the generated data G(z) by minimizing D(G(z)) and maximize
he score it assigns to the original data x by maximizing D(x). In
his way, the optimization function for D is shown as follows.

max
D

V (G,D) = Ex∼pr (x)[logD(x)]

+ Ez∼pz (z)[log(1− D(G(z)))]
(3)

In this work, the discriminator and the generator are alterna-
ively optimized, and Jensen–Shannon (JS) divergence is utilized
o measure the difference between the original data distribution
nd the generated data distribution. JS divergence reaches its
owest value as the discriminator and the generator reach a Nash
quilibrium [25] where D(G(z)) = D(x) = 0.5. The GAN model
onverges under such a scenario.

.2. Mode collapse

Theoretically, the problem of mode collapse does not easily
appen. The algorithm of vanilla GAN [1] shows that the training
rocess is based on a stochastic strategy, i.e., a stochastic gradient
escent optimization or a stochastic sampling method (z ∼ pz(z)
nd x ∼ pr (x)). This means that the gradients backpropagated
o the generator G will be different at each epoch. Given that
radients have an influence on the generated instances, each time
gets different gradients, G should produce different instances.
his analysis is, however, only a theoretical one. The GAN model
ay reach a near-equilibrium, when training succeeds in GAN,
hich happens from certain hyperparameter combinations [26].
ode collapse still often occurs in practice.
Assuming the original data is supported on the manifold Λ,

hich has a set of disconnected manifolds, each indicated by
i, we get Λ =

⋃n
i=1 Mi. The prior pz(z) is often a bounded

istribution (e.g., N (0, 1) or U(−1, 1)), and is contained in the
4

andom space Z . In the process of training a GAN, G is designed
o build a mapping function which maps noise from the ran-
omized space Z into data space χ . However, such a mapping

is not surjective [27], such that just a part of the original data
manifolds (

⋃k
i=1 Mi, k < n) are learned by G. In this way, D

cannot distinguish the generated data from real data, because D
is only used to evaluate the probability that a sample is from
the original dataset rather than generated by G. Although this
generator produces realistic-like data, the remaining manifolds
are missed under such a scenario.

We assume that D always maximizes the probability of as-
igning the correct label to both the original data and samples
roduced by G (See Eq. (3)). With this in place, D judges all
amples generated by G as fake (low probability for D(G(z)))
ven though G has learned some original data manifolds. To fool
, G searches for other manifolds to learn. Since the mapping
s not surjective, GAN repeats such a cat-and-mouse game and
ecomes stuck. Note that there is no countermeasure in Eq. (1)
hat explicitly forces generator G to escape this scenario. Hence,
has the tendency to produce identical but safe instances rather

han diverse but unsafe samples. Fig. 2 shows a cat-and-mouse
xample.

.3. Mutual information

Mutual Information [17] is a metric of the mutual dependence
etween two random variables. It can quantify the amount of
nformation obtained from one random variable through observ-
ng another random variable. In this way, mutual information can
bjectively reflect the correlation between the two variables. The
efinition of mutual information is shown as follows.
Given a pair of random variables, (X, Y ), over the space X ×Y .

heir joint density function is p(x, y), and the marginal prob-
bility density functions are p(x) and p(y) respectively. Mutual
nformation can be defined as follows.
I(X; Y ) = H(X)+ H(Y )− H(X, Y )

=

∑
x∈X

∑
y∈Y

p(x, y)log
p(x, y)

p(x)× p(y)
(4)

We now take the MNIST dataset to discuss the mutual infor-
mation in MIM-GAN. Assuming there are two generators G1 and
2, each generator produces 100 generated images at each epoch.
performs 10-class classification and it has enough capacity.

ach generator attempts to learn figures ‘0’-’9’. After feeding all
he generated images into the classifier C , C always accurately
redicts the labels of generated data, and the probability of G1(z)
G2(z)) is termed p(G1) (p(G2)) in our study. For example, G1 has
earned the figures ‘0’-’4’ and each figure holds 20 instances.
(G1(z) = 0) = p(G1(z) = 1) = p(G1(z) = 2) = p(G1(z) = 3) =
(G1(z) = 4) = 1

5 . p(G1) indicates the marginal probability density
function p(x) of variable X whilst p(G2) indicates the marginal
probability density function p(y) of another variable Y .

We consider a case in which G1 has learned the figures ‘0’-’4’
whilst G2 has also learned the figures ‘0’-’4’ at a specific moment.
Each figure still holds 20 generated images, for convenient dis-
cussion. Under such a case, the mutual information between G1
and G2 is higher than the case where G2 has, instead, learned the
figures ‘5’-’9’. In the later case, the correlation between the two
models is lower than in the former, resulting in lower mutual
information as well. Hence, MIM-GAN needs to minimize the
correlation between generators to make generators learn differ-
ent information, and this can be achieved subsequently with the
minimization of the original generator loss.

In the next section, we present our proposed MIM-GAN and
give a theoretical analysis, essentially showing that the training
criteria allows MIM-GAN to learn a set of disconnect manifolds.
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Fig. 2. Pr (x) is the four-Gaussian (pink clusters) and we assume in this case each Gaussian indicating a single manifold. What we expect is to map a given random
Gaussian into the four-Gaussian with G. However, the example shows that G just maps the random Gaussian to a certain Gaussian at different steps (steel-blue
luster in sub-figures (a), (b) and (c)).
w

. MIM-GAN

To address the problem of mode collapse, MIM-GAN em-
loys mutual information to ensure that multiple generators learn
isconnected manifolds. To this end, there are two important
ssues to be addressed: (1) How the generators learn the discon-
ected manifolds by minimizing mutual information; and (2) Will
IM-GAN converge to the equilibrium.

.1. Disconnected manifolds learning

We first introduce a set of generators G1:n to build a mapping
unction that can map a random noise code z from randomized
pace Z into the data space χ . We define a prior on Z as pz(z),
here the generators sample noise from. The original data fol-

ows a specific distribution which we term pr (x). As a GAN variant,
IM-GAN still learns with the minimax game, i.e., maximizing

he discriminator D and minimizing the generators G1:n. As op-
osed to the vanilla GAN model, each generator in MIM-GAN is
ncouraged to focus on different manifolds of the original data.
n this way, the objective function of MIM-GAN can be defined as
ollows:
min
G1:n

max
D

V (G1:n,D) = Ex∼pr (x)logD(x)

+
1
n

n∑
k=1

Ez∼pz (z)[log(1− D(Gk(z)))]

+
1
2

∑
i̸=j

λI(p(Gi(z)); p(Gj(z)))

(5)

here n indicates the number of generators and λ indicates
coefficient. The classifier C performs multi-class classification

o produce statistical probabilities of generated data for mutual
nformation calculation, and those probabilities produced by the
th generator are termed p(Gi(z)). Since D still tries to distinguish
he generated data from real data by minimizing D(G1:n(z)) and
aximizing D(x), and G1:n attempts to fool D into accepting their
utputs as real data by maximizing its score D(G1:n(z)), the gen-
rators and the discriminator are alternatively optimized by the
ollowing functions:

min
G1:n

VMIM−GAN (G) =
1
n

n∑
k=1

Ez∼pz (z)[log(1− D(Gk(z)))]

+
1
2

∑
i̸=j

λI(D(Gi(z));D(Gj(z)))

max
D

VMIM−GAN (D) = Ex∼pr (x)logD(x)

+
1
n

n∑
k=1

Ez∼pz (z)[log(1− D(Gk(z)))]

Assuming the discriminator D has enough capacity, we show
below that the optimal discriminator D is at the equilibrium point
5

pr =
pG1+pG2+···+pGn

n , given that D is only used to estimate a
probability that a sample is from the original dataset rather than
generated by generators.

Proposition 1. For generators G1, G2, . . . , Gn fixed, the optimal
discriminator D is

D∗(x) =
pr

pr +
pG1+pG2+···+pGn

n
(6)

Proof. The training criteria for the discriminator D, given a mix-
ture of generators G1, G2, . . . , Gn, is to maximize the quantity V (D).
Note that all generators G1:n sample noise code from a single
prior distribution pz(z). pz(z) is the total probability in MIM-
GAN, and P(Gi) is the probability of choosing Gi. Hence, pz(z) =∑n

i=1 P(Gi) × p(z|Gi). Here, we assume each generator Gi holds
the same sampling proportion. In other words, P(G1) = P(G2) =
· · · = P(Gn). For example, we assume Z = z1, z2, . . . , z100
and n = 10, generator G1 samples noises z1, z2, . . . , z10 and
z11, z12, . . . , z20 are allotted to generator G2, and so on. In this
way, we get:

V (D) =
∫
x
pr (x)logD(x)dx

+
1
n

n∑
k=1

∫
z
pz(z|Gk)P(Gk)log[1− D(G1(z))]dz

=

∫
x
pr (x)logD(x)+

1
n
pG1 (x)log[1− D(x)]

+
1
n
pG2 (x)log[1− D(x)] + · · ·

+
1
n
pGn (x)log[1− D(x)]dx

=

∫
x
pr (x)logD(x)

+
pG1(x) + · · · + pGn(x)

n
log[1− D(x)]dx

It can be seen that D achieves its maximum in [0,1] at pr =
pG1+pG2+···+pGn

n . This is because each generator Gi forms a single
distribution pGi , n generators together induce a mixture of an em-
pirical distribution, which is used to fit pr . We compute the partial
derivation of ∂V (D(x))

∂D(x) , and we get pr
D(x) =

1
n
pG1+pG2+···+pGn

1−D(x) . In this
ay, Eq. (6) is obtained, and the maximum of Eq. (6) is 1

2 when
pr =

pG1+pG2+···+pGn
n . This implicitly indicates that the discrimi-

nator cannot distinguish the mixture generated data distribution
from the original data distribution. Based on Proposition 1, we
substitute Eq. (6) into Eq. (5), and we get:

V (G) =Ex∼pr log
pr

pG1+pG2+···+pGn
pr + n
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+
1
n
Ex∼pG1 log

pG1+pG2+···+pGn
n

pr +
pG1+pG2+···+pGn

n

+ · · ·

+
1
n
Ex∼pGn log

pG1+pG2+···+pGn
n

pr +
pG1+pG2+···+pGn

n

+
1
2

∑
i̸=j

λI(p(Gi(z)); p(Gj(z)))

=

∫
x
pr log

pr

pr +
pG1+pG2+···+pGn

n

dx

+
1
n

∫
x
pG1 log

pG1+pG2+···+pGn
n

pr +
pG1+pG2+···+pGn

n

dx

+ · · · +
1
n

∫
x
pGn log

pG1+pG2+···+pGn
n

pr +
pG1+pG2+···+pGn

n

dx

+
1
2

∑
i̸=j

λI(p(Gi(z)); p(Gj(z)))

=

∫
x
pr (x)log

pr

pr +
pG1+pG2+···+pGn

n

+
pG1(x) + · · · + pGn(x)

n
log

pG1+pG2+···+pGn
n

pr +
pG1+pG2+···+pGn

n

dx

+
1
2

∑
i̸=j

λI(p(Gi(z)); p(Gj(z)))

Theorem 1. The global minimum of the virtual training criterion
V (G) is achieved if and only if

pG1+pG2+···+pGn
n = pr and each

generator captures manifolds which other generators do not capture.
Under such a scenario, the score of mutual information is small
enough and it is assumed as δ in our study. Hence, V (G) achieves
he optimal value −2log2+ δ at that point.

Proof. For
pG1+pG2+···+pGn

n = pr , D∗(x) = 1
2 . In this way, we can

bserve that V (G) reaches the value −2log2 + δ. This is because
pG1+pG2+···+pGn

n is viewed as a mixture distribution of generated
data induced by G1:n. Assuming the classifier C has enough ca-
pacity and it can accurately predict the labels of generated data at
each epoch, p(Gi) then royally reflects the statistical probabilities
of generated data which belong to a specific category. In this way,
the mutual information I(p(Gi); p(Gj)) represents the correlation
between Gi and Gj. We minimize the correlation between gener-
ators to guide generators learning different manifolds. Assuming
each generator holds manifolds which other generators do not
hold, the correlation between any two generators is small enough.
Hence, we obtain:

V (G) =− 2log2+
∫
x
pr log

pr
pr+

pG1
+pG2

+···+pGn
n

2

× dx

+

∫
x
(
pG1 + pG2 + · · · + pGn

n
)log

pG1+pG2+···+pGn
n

pr+
pG1
+pG2

+···+pGn
n

2

dx

+ I(p(Gi(z)); p(Gj(z)))

=− 2log2+ KL(pr ∥
pr +

pG1+pG2+···+pGn
n

2
)

+ KL(
pG1 + pG2 + · · · + pGn

n
∥

pr +
pG1+pG2+···+pGn

n

2
)

+ I(p(G (z)); p(G (z)))
i j

6

=− 2log2+ 2JSD(pr ∥
pG1 + pG2 + · · · + pGn

n
)

+ I(p(Gi(z)); p(Gj(z)))

where KL is the Kullback–Leibler divergence [28] and JSD indi-
cates Jensen–Shannon divergence [29]. The generated data pro-
duced by all generators fools the discriminator into accepting it
as real data when pr =

pG1+pG2+···+pGn
n . Under such a scenario,

JSD holds a minimum of 0 and I(p(Gi(z)); p(Gj(z))) also holds a
minimum of δ. Here, we discuss the term I(p(Gi(z)); p(Gj(z))).

I(p(Gi(z)); p(Gj(z)))
= H(p(Gi(z)))+ H(p(Gj(z)))− H(p(Gi(z)), p(Gj(z)))

= −

∑
pilogpi −

∑
pjlogpj +

∑
p(i,j)logp(i,j)

where p(Gi(z)) (p(Gj(z))) indicates the statistical probabilities of
generated instances from ith (jth) generator, and this is calculated
by a trained classifier. Note that I(p(Gi(z)); p(Gj(z))) contains the
information learned by the ith and jth generators. When we travel
over each generator but the ith one (j ∈ 1 : n and j ̸= i), the
mutual information values are aware of the information learned
by other generators. Based on this, we can guide generators to-
ward holding different manifolds through minimizing the mutual
information along with minimizing generator loss. Assuming θ
indicates the parameters of the ith generator, the minimizing
process is achieved by training criterion with back-propagation
through

θGi ← ∇θ

⎛⎝ 1
K
log(1− D(Gi(z; θ )))+

∑
i̸=j

I(C(Gi(z; θ )), C(Gj(z)))

⎞⎠
where j ∈ 1 : n and j ̸= i. Note that we fix other networks
when we update the parameters of Gi, and other generators also
adopt the same strategy to update their parameters as Gi. If V (G)
reaches the global minimum, the mutual information also reaches
its minimum. Hence, the global optimal V (G) = −2log2+ δ.

Theorem 2. The probability of the occurrence of gradients vanishing
is significantly reduced, and its probability approaches 0 if n is
enough large.

Proof. For a single generator, the original data distribution pr and
the generated data distribution pG have negligible, or even zero,
overlapping area with a large probability. Assume this probability
is P . MIM-GAN employs multiple generators (G1:n) and guides
hese generators to learn different manifolds of data. In this way,
he probability is reduced to P

n . If n → ∞, the probability P
approximates 0.

The pseudo-code of the algorithm is formally presented in
Algorithm 1. Moreover, our generator and discriminator archi-
tectures are from vanilla DCGAN [30], and the details of our
adopted components are still Conv − BatchNorm − ReLu [31]
(Generator G) or Conv − BatchNorm − LeakyReLu [32] (Discrim-
inator D), which follows the recent multi-generator GAN mod-
ls (e.g., MGAN [16], DMGAN-PL [9]). This is because we do
ot need to enforce the discriminator 1-Lipschitz continuity [33,
4], and as such is the case, batch normalization is necessary
n the MIM-GAN discriminator to scale the variances of vari-
us learning features into a consistent range. As for the classi-
ier C , we adopt Inception Network (i.e., Inception-V4). In Algo-
rithm 1, Iidx indicates the mutual information value among the
current generator (Gidx) and other generators (Gi, i ̸= idx and
i ∈ [1, n]), i.e., I(C(Gidx(z)); C(G1(z))), . . . , I(C(Gidx(z)); C(Gidx−1(z))),
(C(Gidx(z)); C(Gidx+1(z))), . . . , I(C(Gidx(z)); C(Gn(z))). After that, we
ntegrate the mutual information value Iidx with the original gen-
rator loss to form a new loss and utilize it to update the parame-
ers of the corresponding generator (G ) with back-propagation.
idx
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Algorithm 1 MIM-GAN.

Input:
Original samples;
noise z;

Output:
Simulation data.

Fun: Cal-MI(idx, n):
rst← 0
Gidx(z) is fed into C to obtain p(Gidx).
for 1:n do

Gi(z) is fed into C to obtain p(Gi).
rst += I(p(Gi), p(Gidx)), idx ̸= i

return rst

Adam optimizer and BCE loss function and n generators
for number of iterations do
• Sampling minibatch of n×m noise samples z1, ..., zn×m

from pz(z), Gaussian distribution with (0,1). Each
generator holds m noise samples.
• Sampling minibatch of m original samples x1, ...xm

from real dataset.
• Updating the discriminators parameters by ascending

its stochastic gradient.
• ▽θD

1
m

∑m
1 {logD(x

(i))+ 1
n log(1− D(G1:n(z(i))))}.

• Sampling minibatch of n×m noise samples z1, ..., zn×m.
• Iteratively calculating the mutual information

Iidx=Cal-MI(idx,n) on each generator (Gidx),
idx ∈ [1 : n].
• Updating the generators’ parameters by descending

its stochastic gradient.
• ▽θGidx

1
m

∑m
1 {

1
K log(1− D(Gidxθ (z

(i)))+ I(C(Gidxθ (z
(i))),

C(Gj(z(i))))}, j ∈ 1 : n and j ̸= idx.
end for

The other generators also adopt the same strategy to update their
parameters. The architecture of our proposed MIM-GAN is shown
in Fig. 3.

4.2. Convergence of Algorithm 1

Proposition 2. Assuming the discriminator D is in the optimal status
t each step of Algorithm 1 and holds enough capability, given G1:n,∑n
i pGi converge to pr .

Proof. Considering an optimal status, each generator only learns
a specific manifold and U(pG1:n ,D) is convex in pG1:n . Let pG1:n ×
D → V (G1:n,D) be convex in its first argument and concave in
its second argument. The supremum of this convex function is at
the point where the maximum for optimal D is attained according
to the Sion minimax theorem [35]. In other words, SUPD(pG1:n ,D)
is convex in pG1:n with a unique global optima. Therefore, pG1:n
converges to pr .

5. Experiments

For the experiments, the implementation details of MIM-GAN
are shown in Fig. 4. Note that each generator in MIM-GAN is
initialized by the same hyperparameters (Normal(0.0, 0.02) and

biases are 0.0) and samples noise from the standard Gaussian

7

distribution (0, 1) (pz(z)). Five recently popular GAN variants
are employed as baselines, which are WGAN [13] SN-GAN [15],
MGAN [16], RaGAN [36] and DMGAN-PL [9]. They are represen-
tative of attempts to address mode collapse.

To make a fair comparison, WGAN and SN-GAN will also
sample the same noise distribution (N (0, 1)) while vanilla MGAN
and DMGAN-PL sample the isotropic multivariate Gaussian distri-
bution N (0, I). As for other model details, we use experimental
settings that are identical to previous works as baselines. The
training epoch in our study has been set the same for all mod-
els (i.e., Epoch = 200), and the learning rate is set to 0.0002
for MGAN, SN-GAN, DMGAN-PL and MIM-GAN while 0.0001 for
RaGAN and 0.00005 for WGAN.

Three commonly used public image datasets, the MNIST,
CIFAR-10 and Celeba, are studied. The MNIST dataset contains
50000 gray-scale images with size 28 × 28. Both the CIFAR-
10 dataset and the Celeba dataset contain RGB images. The
number of images in the CIFAR-10 dataset is 50000 and the
size is 3 × 32 × 32. The number of images in the Celeba
dataset is 202599 and the size is 3 × 178 × 218. The MNIST
and the CIFAR-10 datasets are labeled and both consist of 10
categories. The Celeba dataset is a face dataset, and it has no
explicit categories because it solely contains the face images.
Nevertheless, the Celeba dataset can be labeled with specific
characteristics (e.g., wearing a hat or not, with glasses or not),
and these characteristics can be used to intrinsically group images
into different categories and show the diversity of generated data.

5.1. MNIST dataset

We first apply MIM-GAN and baselines to MNIST dataset,
and the 10 categories are ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’,
respectively. For WGAN and SN-GAN, we directly generate 100
instances. For MGAN, DMGAN-PL and MIM-GAN, the number of
generators is set to 10, and each generator produces only 10
instances. The generated results are shown in Fig. 5, and the
generated samples at each row in sub-figure (c), sub-figure (d)
and sub-figure (e) are from the same generator. For example, the
generated images in row 1 are from G1.

In Fig. 5, we can see that our proposed MIM-GAN outperforms
other models. The generated data produced by WGAN lacks the
figures ‘4’, ‘5’ and ‘6’, and the quality of generated data is the
worst. The samples generated by MGAN contain many identical
instances. Generator 2, generator 7, generator 8 and generator 10
in MGAN learn the same manifolds. This is because MGAN utilizes
the shared parameters strategy among its generators. The gener-
ators hold the same parameters during training and consequently
generate identical samples. In addition, MGAN does not learn the
figures ‘0’ and ‘2’. The results prove that MGAN cannot address
the problem of mode collapse. As for SN-GAN and DMGAN-PL, the
quality of their generated data is not satisfactory, which is shown
in the subsequent Table 1. MIM-GAN, alternatively, learns the
manifolds of data in a mutually exclusive manner. For example,
in sub-figure (d), G2 tends to produce figure ‘9’ while G7 tends
to produce figure ‘4’. In addition, all categories in MIM-GAN are
generated. The features (e.g., shape or angle) are different even
though generated instances belong to the same category.

Here, we utilize the MNIST Score [42], which is similar to the
Inceptions Score [43] but instead uses a classifier adapted to the
MNIST training data instead of the Inception network to evaluate
the quality of generated data. The MNIST scores (higher scores
reflect better performance) are shown in Table 1. As is visually
predictable from the outputs, the MNIST score of our proposed
MIM-GAN is higher than other GAN variants.

Since our proposed MIM-GAN utilizes mutual information to
guide different generators to capture different manifolds, and the
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Fig. 3. Dotted arrows indicate sampling from a specific distribution. For reducing the correlation among generators, we employ mutual information to guide the
generators mutually exclusively learn the manifolds of original data. The navy-blue arrow indicates that we combine all generated data to form a mixture generation
G1:n(z). The corresponding distribution of G1:n(z) is expected to match the original data distribution pr . p(Gi) indicates the probability distribution of generated
data which are produced by ith generator and accurately predicted by the classifier C . The red arrow indicates that we integrate the mutual information into the
corresponding generator loss.
Fig. 4. Architectural details of MIM-GAN for MNIST and CIFAR10 as well as Celeba datasets. We use the Adam gradient method [37] and BCE [38] to update the
parameters of all components. The parameter of LeakyRelu [32] is set to 0.02 and that of Dropout [39] is set to 0.5. The weights of our model are set to Normal(0.0,
0.02) and the biases are set to (0.0). The activation of the last layer for the discriminator and generator is Sigmoid [40] and Tanh [41], respectively. Note that the
architectures of each generator are the same.
h
h
(
G
i
u
e

Table 1
The MNIST scores of generated data on MNIST dataset.
Models MNIST score

WGAN [13] 6.006
MGAN [16] 6.618
SN-GAN [15] 6.514
DMGAN-PL [9] 6.622
RaGAN [36] 6.417
MIM-GAN 7.958

mutual information in this paper can reflect which manifolds
the generators captured, we utilize this mutual information to
observe the process of convergence of our model. In this case, we
employ two generators and each generator produces more syn-
thetic instances (here it is 50). The convergence process is shown
in Fig. 6. From Fig. 6(c), a scenario can be obviously observed in
which the mutual information converges at epoch=24. Fig. 6(a)
and (b) shows the generated images (the first 5 rows are from
one generator and the second 5 rows are from another generator)
at epoch=24 and epoch=100. In sub-figure (a), the first generator
has captured the categories ‘0’, ‘1’, ‘2’, ‘4’, ‘5’ and ‘7’ but lacks the
figure ‘8’, the second generator mainly holds the categories ‘3’,
8

‘6’, ‘8’ and ‘9’ but lacks the category ‘1’. The scenario of sub-figure
(b) is similar to that of sub-figure (a) in that the first generator
has captured the categories ‘3’, ‘4’, ‘6’, ‘7’ and ‘9’ and the second
generator holds the categories ‘0’, ‘1’, ‘2’, ‘5’ and ‘8’. However, the
first generator and the second generator show all figures between
the two cases combined. The scenario at epoch=200 is similar to
both epoch=24 and epoch=100. This indicates that all categories
can always be captured by our proposed MIM-GAN if the mutual
information converges.

With each generator of MIM-GAN in Fig. 5 just producing
10 samples, one may wonder about the generating capability
when producing more samples from each generator. To this end,
we demonstrate each generator in MIM-GAN producing 64, 100
and 144 samples, respectively. Here, we employ two generators
for convenient observation. The generated images are shown in
Fig. 7. In sub-figure (a), the generated instances from G2 do not
old the figure ‘2’, but the generated instances from G1 do not
old the figures ‘5’ and ‘6’. In sub-figure (b), the same scenario
lacking figure ‘2’) arises in G2 while the generated instances from
1 lack figures ‘6’ and ‘8’. As for sub-figure (c), the generates
nstances from G2 lack figure ‘4’ while that from G1 lacks fig-
re ‘2’. However, G1 and G2 combined contain all figures. The
xperimental results show that generators in MIM-GAN learn
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Fig. 5. Generated images by baselines and MIM-GAN. For MGAN, DMGAN-PL and MIM-GAN, we employ 10 generators and each generator only produces 10 samples.
ach row indicates a generator.
Fig. 6. The mutual information value of our proposed MIM-GAN on MNIST.
utually exclusively from each other. Some manifolds learned
y one generator are not learned by a different generator, thus
ddressing the problem of mode collapse.

.2. CIFAR10 dataset

We continue to apply our proposed MIM-GAN and baselines to
he CIFAR10 dataset. The 10 categories of CIFAR10 are ‘airplane’,
automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’ and
truck’, respectively. In a similar manner to MNIST, we adopt 10
enerators to produce simulation instances for MGAN, DMGAN-
L and MIM-GAN. The generated results are shown in Fig. 8,
nd the Inception scores and the Fréchet Inception Distance (FID)
cores [44] obtained by our proposed MIM-GAN and baselines are
eported in Table 2. Note that all objects in Fig. 8(b) generated
y SN-GAN take the same color, and this can be viewed as a
anifestation of mode collapse. This is because SN-GAN utilizes

Wij
λ1

(W indicates the weight matrix of the discriminator and λ1
efers to the largest singular value) to enforce the discriminator 1-
ipshitz continuity. However, such a strategy does not completely
9

correspond to penalizing the spectral norm [19], and it limits, in
turn, the diversity of generated data, resulting in all generated
objects taking the same color. Under such a scenario, we cannot
guarantee the generated data quality, which is loyally reflected by
the Inception score 3.905. The color of generated images produced
by MGAN either tends toward green or orange. The synthetic
images produced by the DMGAN-PL model hold the worst quality,
because the DMGAN-PL model prefers learning the prior over
generators to produce synthetic images with good quality [9]. As
with MNIST, we still utilize mutual information to observe the
process of convergence of our model, which is shown in Fig. 9.
From Fig. 9, we can observe that the mutual information gets con-
verged at epoch=28. Overall, our proposed MIM-GAN outperforms
the baselines, achieving the highest Inception Score. This result
further proves that MIM-GAN helps address the problem of mode
collapse.

5.3. Celeba dataset

For conveniently training networks, we reshape the rectangle
image to size 3× 128× 128. In this case, we employ 5 generators
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Fig. 7. MIM-GAN employs two generators to produce simulation data, and each generator produces 64, 100 and 144 instances respectively. The left part indicates
he first generator, and right part indicates the second generator.
able 2
nception scores and FID scores on CIFAR10 dataset.
Models Inception score FID score

WGAN [13] 4.035 218.195
MGAN [16] 4.392 226.907
SN-GAN [15] 3.905 229.135
DMGAN-PL [9] 2.758 223.826
RaGAN [36] 4.779 210.921
MIM-GAN 6.233 203.954

for MGAN, DMGAN-PL and our proposed MIM-GAN, and each
generator only produces 5 instances. For calculating the mutual
information, we manually label the faces with hats and glasses
as 0 (and without hats as 1). The generated images are shown in
Fig. 10. The MIM-GAN is, again, better than other GAN variants.
10
The generated instances in sub-figure (a) are produced by WGAN,
and the instances are all, basically, smiling faces. Furthermore,
there are no people wearing hats or glasses. The generated images
of SN-GAN (sub-figure (b)) and DMGAN-PL (sub-figure (d)) are
covered by a gray or brown tint and have the lowest quality. For
MGAN (sub-figure (c)), the performance is similar to WGAN. In
other words, these generated faces have no hats or glasses. MIM-
GAN produces a face with glasses (row 4, column 1 and column
5) and a face with a hat (row 5, column 5) along with intermixed
smiling faces. This demonstrates that different generators learned
different manifolds. The results show the effectiveness of MIM-
GAN on the dataset at high resolution. Moreover, the convergence
process of our model in CelebA is shown in Fig. 11, and the
mutual information gets converged at epoch=72. In this case, we
still employ two generators and each generator only produces 50
samples, which are shown in sub-figures (a) and (b). We now
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Fig. 8. Generated images by baselines and MIM-GAN. Similar to MNIST, each row indicates a generator in sub-figures (c), (d) and (f).
Fig. 9. The mutual information value of our proposed MIM-GAN on CIFAR10.
able 3
ID scores of generated data on CelebA.
Models FID score

WGAN [13] 250.724
MGAN [16] 248.674
SN-GAN [15] 231.094
DMGAN-PL [9] 377.280
RaGAN [36] 240.029
MIM-GAN 186.528

report the FID score obtained by our proposed MIM-GAN and
the baselines in Table 3. From Table 3, we can observe that our
proposed MIM-GAN outperforms baselines in terms of achieving
the lowest FID score on CelebA dataset.

5.4. Discussion

Models utilizing multiple generators are a necessity in effec-
ively learning the disconnected manifolds of original data [9]; as
uch, recent variants of GAN adopt this strategy to address the
11
problem of mode collapse [9,16,23,24]. To guide multiple gen-
erators learning different manifolds, the current multi-generator
GAN variants (e.g., MGAN and DMGAN-PL) focus on maximizing
the correlation between generator id and generated samples [9,
16], and the models assume the generator ids either follow a
certain distribution (e.g., Uniform or Multinomial) or utilize a
neural network to approximate the distribution over generators.
However, these strategies have challenges. The former tends to
learn the same manifolds and produce identical instances, while
the latter causes models to produce synthetic images with low
quality. This study proposes to utilize the statistical probabilities
of generated data to show which manifolds are captured by which
generators. The correlation between generators is, additionally,
minimized with mutual information to guide generators in learn-
ing different manifolds. This results in our model’s generation
of higher-quality and more diverse objects. See Fig. 5, Table 1,
Fig. 8, Table 2 and Fig. 10. In addition, our proposed approach
can significantly reduce the probability of having a negligible
overlapping area between pr and pG. This means that MIM-GAN
can also address the vanishing gradient problem.
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Fig. 10. Generated images by baselines and MIM-GAN. For MGAN, DMGAN-PL and MIM-GAN, we employ 5 generators and each generator only produces 5 samples.
ach row indicates a generator.
Fig. 11. The mutual information value of our proposed MIM-GAN on CelebA.
6. Conclusion

In this paper, to deal with the problem of mode collapse, we
propose MIM-GAN. Our approach employs multiple generators, a
classifier and a discriminator to learn a set of disconnected man-
ifolds. Each generator is expected to capture the manifolds that
the other generators do not hold. To achieve this goal, we adopt
mutual information and propose a new minimax game among
one discriminator, one classifier and a set of generators. We
formulate an optimization problem that minimizes the mutual
information among generators and minimizes the JS divergence
between a mixture generated data distribution and an original
data distribution. Comprehensive experiments on the MNIST, the
CIFAR10 and the Celeba datasets demonstrate the following ca-
pabilities of our proposed MIM-GAN. (i), MIM-GAN generates
diverse objects at different resolutions (28 × 28 for MNIST and
128 × 128 for Celeba). (ii), a set of disconnected manifolds are
learned by multiple generators, and mutual information can pre-
vent multiple generators from learning the same manifold. (iii),
MIM-GAN achieves the highest Inception score and the lowest FID
score among tested models.
12
Note that although the multi-generator GAN model is advanta-
geous in addressing the problem of mode collapse, the theoretical
analysis to determine the optimal number of generators is cur-
rently lacking in the multi-generator GAN community. However,
we can observe some interesting empirical explanations in our
paper. From Figs. 5 and 7, for example, we can easily observe that
more generators are suitable for addressing the mode collapse
problem if each generator produces few instances (e.g., 10 in-
stances in Fig. 5), and few generators are enough if each generator
produces more instances (e.g., 100 instances in Fig. 7). Based on
the experimental results, we assume that the number of genera-
tors is relevant to the number of synthetic instances. We would
like to investigate this hypothesis in our future work.
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