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Abstract 
 

Document clustering is a fundamental operation used in unsupervised document 
organization, automatic topic extraction and information retrieval. But most clustering 
technologies are limited in their application on the static document collection. Intelligence 
analysts are currently overwhelmed with tremendous amount of text information streams 
generated everyday. There is a lack of comprehensive tool that can real-time analyze the dynamic 
changed information streams. In this paper, we propose a bio-inspired clustering model, the 
Multiple Species Flocking clustering model (MSFC), and present a distributed multi-agent MSFC 
approach for clustering dynamic updated text information streams. The decentralized 
architectures and communication schemes of the MSFC multi-agent distributed implementation 
for load balance and status information synchronization are also discussed in this article. 
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1. Introduction 

Clustering analysis is a descriptive data mining task, which involves dividing a set of 
objects into a number of clusters. The motivation behind clustering a set of data is to find the 
inherent structure in the data and expose this structure as a set of groups [1]. The data objects 
within each group should exhibit a large degree of similarity while the similarity among different 
clusters need be minimal [12]. Document clustering is a fundamental operation used in 
unsupervised document organization, automatic topic extraction and information retrieval. 
Research in document clustering analysis mainly focuses on how to quickly and accurately 
cluster static document collection, while research on clustering the dynamic text information 
stream is limited. However, currently there is an increasing demand for clustering analysis of 
dynamic documents to meet the challenge of analyzing the extensive amount of text information 
stream generated everyday. 

New algorithms based on biological models, such as ant colonies, bird flocks, and bee 
swarms, have been invented to solve problems in the field of computer science. These algorithms 
are characterized by the interaction of a large number of agents following simple rules. Compared 
to traditional algorithms, the bio-inspired algorithms are usually flexible, robust, decentralized 
and self-organized. These characters make the bio-inspired algorithms potentially suitable for 
solving dynamic problems, such as dynamic changed document collection clustering. In 1991, 
Deneubourg [8] proposed one of the first clustering solutions inspired by ant colonies. Lumer and 
Faieta [13] extended Deneubourg’s model to make it more suitable for data clustering. In recent 
years, more bio-inspired clustering approaches [3;4;7;21;23;24] were proposed for clustering data 
or document collection. However, these approaches still lack the ability to cluster dynamic 
changed document collection. In this paper, we propose a new bio-inspired clustering model, the 
Multiple Species Flocking clustering model (MSFC), and present a distributed multi-agent MSFC 
approach for clustering a dynamically updated text information stream. Unlike other partition 
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clustering algorithms such as K-means, the MSFC based algorithm does not require initial 
partitional seeds or cluster centers. This algorithm can continually refine the clustering results and 
quickly react to the individual data change. This character makes the MSFC algorithm capable of 
clustering a dynamically changed document information stream. 

The remainder of this paper is organized as follows: Section 2 describes related work in 
the traditional and bio-inspired document clustering area. Section 3 provides preliminaries of 
document representation and document similarity computing in the clustering algorithms. Section 
4 provides a general overview of the basic flocking model. The MSFC model is proposed and a 
single processor MSFC model implementation for clustering a static document collection is 
described in section 4. In section 5, a multi-agent scheme for distributed dynamic document 
clustering is presented. Section 6 provides detailed experimental setup and results to compare the 
performance of the multi-agent implementation for clustering the dynamic updated document 
stream on the cluster computer and a single processor computer. The conclusion is in Section 7. 
 
2. Related Work 

There are two major clustering techniques: partitioning and hierarchical [12]. Most 
document clustering algorithms can be classified into these two groups. In recent years, it has 
been recognized that the partitioning techniques are well suited for clustering a large document 
dataset due to their relatively low computational requirements [20]. The best-known partitioning 
algorithm is the K-means algorithm and its variants [19]. This algorithm is simple, 
straightforward and based on the firm foundation of analysis of variances. One drawback of the 
K-means algorithm is its clustering result is sensitive to the selection of the initial cluster 
centroids and may converge to local optima. The other limitation of the K-means algorithm is that 
it generally requires a prior knowledge of the probable number of clusters for a document 
collection. Some traditional partitional clustering algorithm variants, such as Fuzzy c-means 
(FCM) , are better than the K-means algorithm at avoiding local minima, but FCM can still 
converge to local minima [12]. The prior knowledge of the probable number of clusters and the 
fuzzy membership function is still required for implementing FCM.  

To deal with the limitations that exist in the traditional partition clustering methods, 
inspired from biological collective behaviors, a number of computer scientists have proposed 
several approaches to solve the clustering problem, such as genetic algorithm (GA) [3], Particle 
Swarm Optimization (PSO) [7], Ant clustering [13] and Self-Organizing Maps (SOM) [23]. 
Among these clustering algorithms, the Ant clustering algorithm is a partitioning algorithm that 
does not require a prior knowledge of the probable number of clusters or the initial partition. Wu 
[24] and Handl [10;11] proposed the use of Ant clustering algorithms for document clustering and 
declared that the clustering results from their experiments are much better than that from the K-
means algorithm. However, in the Ant clustering algorithm, the clustered data objects do not have 
mobility by themselves. The movement of data objects has to be implemented through the 
movements of a small number of ant agents, which will slow down the clustering speed. Since the 
ant agent carrying an isolated data object does not communicate with other ant agents, it does not 
know the best location to drop the data object. The ant agent has to move randomly in the grid 
space until it finds a place that satisfies its object dropping criteria, which usually consumes a 
large amount of computation time. The experiment in [6] indicates the Flocking clustering 
algorithm is more efficient than the Ant clustering algorithm, because each document object in 
the collection is projected as an agent moving in a virtual space, and each agent's movement 
activity is heuristic as opposed to the random activity as in the Ant clustering algorithm. It does 
not require a prior knowledge of the number of clusters in the datasets as well. The major 
challenge of the Flocking clustering algorithm in [6] is how to distribute the algorithm’s 
computational load in a distributed environment. In the following section, we will explain how 
the MFSC model generated from bird flocks and how MSFC Multi-agent distributed 
implementation is applied to document clustering applications.  
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3. Preliminaries 
3.1 Document Representation 

In clustering algorithms, the dataset to be clustered can be represented as a set of vectors 
X={x1, x2, …., xn}, where the vector xi corresponds to a single object and is called “feature vector” 
that contains proper features representing the object. The text document objects can then be 
represented using the Vector Space Model (VSM) [18]. In VSM, the content of a document is 
formalized as a dot in a multi-dimensional space and represented by a vector x, such as 
x= },.....,{ 21 nwww , where wi(i = 1,2,…,n) is the term weight of the term ti in one document. The 
term weight value wi represents the significance of this term in a document. To calculate the term 
weight, the occurrence frequency of the term within a document and in the entire set of 
documents needs to be considered. The most widely used weighting scheme combines the term 
frequency with inverse document frequency (TF-IDF) [17]. The weight of term i in document j is 
given in Equation 1: 

)/(log** 2 jijijijiji dfntfidftfw ==    (1) 
where tfji is the occurrence number of term i in the document j; dfji indicates the term frequency in 
the document collections; and n is the total number of documents in the collection. Before 
translating the document collection into TF-IDF VSM, the very common words (e.g. function 
words: “a”, “the”, “in”, “to”; pronouns: “I”, “he”, “she”, “it”) are completely stripped out and 
different forms of a word are reduced to one canonical form by using Porter’s algorithm [14]. 
 
3.2 The Similarity Metric 

The similarity between two documents needs to be measured in clustering analysis. Over 
the years, two prominent ways have been proposed to compute the similarity between documents 
xp and xj. The first method is based on Minkowski distances, given by: 
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where xp and xj are two document vectors; dx denotes the dimension number of the vector space; 
wk,p and mk,j stands for the documents xp and xj’s weight values in dimension k.  

The other commonly used similarity measurement in document clustering is the cosine 
correlation measurement, given by: 
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where jp xx denotes the dot-product of the two document vectors and |.| indicates the length of the 
vector. 

Both similarity metrics have been widely used in the text document clustering literature. 
In the present proposed algorithm, we chose the Euclidean distance (Minkowski distances where 
n=2) as the similarity metric. In order to manipulate equivalent threshold distances, considering 
that the distance ranges will vary according to the dimension number, this algorithm uses the 
normalized Euclidean distance as the similarity metric of two documents, xp and xj, in the vector 
space. Equation 4 represents the distance measurement formula:  
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where xp and xj are two document vectors; dx denotes the dimension number of the vector space; 
wk,p and mk,j stands for the documents xp and xj’s weight values in the dimension k.  
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4. The Flocking Based Clustering Algorithm 
4.1 The Flocking Model 

A flock can be simply described as a group of individuals clustered together, moving with 
a common velocity. In nature, there are numerous examples of this sort of behavior including 
flocks of birds, herds of land animals, swarms of insects and schools of fish. The Flocking model 
is a bio-inspired computational model simulating the animation of a flock of entities, called 
“boids” [16]. In this model, each boid makes its movement decisions on its own according to a 
small number of simple rules that react to its neighboring members in the flock and the 
environment it senses. The Flocking model is one of the first collective behavior models that have 
many popular applications, such as animation [2], robotic control [5], time varying data 
visualization [15;22] and spatial cluster retrieval [9]. The basic Flocking model, first proposed by 
Craig Reynolds [16], consists of three simple steering rules that need to be executed at each 
instance over time, which includes: (1) Separation: steering to avoid collision with other boids 
nearby; (2) Alignment: steering toward the average heading and matching the velocity of its 
neighbor flock mates; (3) Cohesion: steering to the average position of the neighbor flock mates. 
These simple local rules of each boid generate complex global behaviors of the entire flock. 
 
4.2 The Multiple Species Flocking Clustering Model 

These three basic rules in Reynolds’s flocking model are sufficient to reproduce the 
movement behavior of a single species bird flock on the computer. However, our experiments 
indicate these three rules will eventually result in all boids in the simulation forming a single 
flock. It can not reproduce the real phenomena in the nature: the birds or other herd animals not 
only keep themselves within a flock that is composed of the same species or the same colony 
creatures, but also keep two or multiple different species or colony flocks separated. In this report, 
we propose a new model, the Multiple Species Flocking Clustering (MSFC) model, to model the 
multiple species bird flock behaviors. In the MSFC model, in addition to these three basic action 
rules as in the Flocking model, a fourth rule, the feature similarity rule, is added into the basic 
action rules of each boid to influence the motion of the boid. Based on this rule, the flock boid 
tries to stay close to these boids that have similar features and stay away from other boids that 
have dissimilar features. The strength of the attracting force for boid similarity and repulsion 
force for dissimilarity is inversely proportional to the distance between the boids and the 
similarity value between the boids’ features.  

The following four mathematical equations illustrate these four action rule of each boid 
in the MSFC model: 
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Feature Similarity Rule: ∑=
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where var , vsr , vcr and vds are velocities driven by the four action rules, ),( bx PPd  is the distance 
between boid B and its neighbor X, n is the total number of the boid B’s local neighbors,  vb and 
vx is the velocity of boid B and X, d1 and d2 are pre-defined distance values and 21 dd f , 

bx PP − calculates a directional vector point, S(B,X) is the similarity value between the features of 
boid B and X.  



 5

To achieve comprehensive flocking behavior, actions of all four rules are weighted and 
summed to give a net velocity vector demanded for the active flocking boid: 

dsdscrcrararsrsr vwvwvwvwv .... +++=     (9) 

where v is the boid’s velocity in the virtual space and dddscrarsr wwwww ,,,, are pre-defined 
weight values.  

Based on the MSFC model, we implemented a multiple species bird flock simulation as 
shown in Figure 1. In this simulation, there are four kinds of boid species and each species have 
200 boids. In the simulation, we use four different colors to represent different species. All 
together, 800 boids are simulated in the environment. At the initial stage, each boid is randomly 
deployed in the environment as shown in Figure 1(a). Each color dot represents one boid. There is 
no central controller in the simulation. Each boid can only sense other boids within a limited 
range and move in the simulation environment by following the four action rules of the MSFC 
model. Although there is no intention for each boid to form a same species group and to separate 
the different species from each other, after several iterations, as shown in Figure 1(b), the boids in 
same species are grouped together and different species are separated.  
 

  
(a)    (b) 

Figure 1: Multiple species bird flocking simulation 
 
4.3 The MSFC Algorithm for Document Clustering 

Inspired by the bird’s ability of maintaining a flock as well as separating different species 
or colony flocks, the Multiple Species Flocking Clustering (MSFC) algorithm uses a simple and 
heuristic way to cluster document datasets. In the MSFC algorithm, we assume each document 
vector is projected as a boid in a 2D virtual space. The document vector is represented as the 
feature of the boid. Following the simple rules in the MSFC model, each boid determines its 
movement on its own in the virtual space. Similar to a bird in the real world, the boids that share 
similar document vector features (same as the bird’s species and colony in nature) will 
automatically group together and became a boid flock. Other boids that have different document 
vector features will stay away from this flock. In this algorithm, the behavior (velocity) of each 
boid is only influenced by its nearby boids. The four MSFC action rules react to this influence 
and generate the boid’s new movement velocity. Although this influence on each boid is local, 
the impact on the entire boid group is global. After several iterations, these simple local rules 
followed by each boid result in generating a complex global behavior of the entire document 
flock, and eventually a document clustering result emerges.  

The MSFC algorithm is a partitioning algorithm and does not require a prior knowledge 
of the number of clusters in the datasets. It generates a cluster of a given set of data through 
projecting the high-dimensional data items on a 2D grid for easy retrieval and visualization of the 
clustering result. In [6], we evaluated the efficiency of the MSFC algorithm with document 
collection that includes 100 news articles collected from the Internet. The news article collection 
has been categorized by human experts and manually clustered into 12 categories. For comparing 
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purpose, the Ant clustering algorithm and the K-means clustering algorithm are applied to the 
same real document collection dataset, respectively. The K-means algorithm requires prior 
knowledge about how many cluster are expected, which means the K-means algorithm needs to 
know the news article category number. Each algorithm will have 300 fixed iterations to refine 
the cluster results. The average results from ten separate experiments are listed in table 1. The 
results indicate that the flocking algorithm achieves better results when compared to the K-means 
and the Ant clustering algorithm for document clustering. The results also shows that the K-
means clustering algorithm result is better than the Ant clustering algorithm result, which is 
different from the experiment results shown in [11;24]. This is due to the Ant clustering algorithm 
requiring more iterations for result refining. If given enough iterations, the Ant clustering 
algorithm can generate better results than the K-mean clustering algorithm.  

  
 

Table 1: The performance results of K-means, Ant clustering and MSFC Algorithms 
Algorithms Average cluster result number Average F-measure value 

MSFC 10.083 0.8058 
K-means (12) 0.6684 

Ant 1 0.1623 
 
5. Multi-Agent Scheme for Distributed Dynamic Document Clustering 

The continual movement of each boid in the MSFC algorithm makes the algorithm 
quickly react to the individual data change. This character indicates that the MSFC algorithm is 
suitable for clustering dynamic changed text stream. Inevitably, using a single processor machine 
to cluster the dynamic text stream requires a large amount of memory and faster execution CPU. 
Since the decentralized character of the MSFC model, using Multi-Agent techniques to develop a 
distributed MSFC clustering approach can increase the clustering speed of the algorithm.  

In the MSFC approach, the document parse, similarity measure and boid moving velocity 
calculation are the most computational consumption parts. The distributed implementation will 
divide these computational tasks into smaller pieces that can be scheduled to concurrently run on 
multiple processors. In order to achieve good performance on distributed computing, several 
issues need to be examined carefully when designing a distributed solution. The first issue is the 
load balance. It is important to maintain load balancing among processing nodes to make sure 
each node have approximately same workload. The second issue is the environment state 
synchronization. It is very important for a distributed implementation to develop a 
synchronization algorithm, which is capable of maintaining causality.  The third issue is to reduce 
the communication between nodes, including the communication overhead of the environment 
state synchronization and the control message exchange between nodes. Based on these 
requirements, a distributed multi-agent based (MAB) implementation of the MSFC algorithm for 
clustering analysis of the text information stream was developed. In MAB, each boid is modeled 
and implemented in terms of agents, which makes each boid pro-active, adaptive and 
communicable. The MAB implementation support distributed load balancing among processing 
nodes in a very natural way. Since each boid agent is implemented for document retrieval, parse, 
similarity comparison and moving velocity calculation independently, it is straight-forward to let 
different agents run on different machines to achieve load balance. Since each agent can be added, 
removed or moved to other machine without interrupting other agent’s running, the system will 
be scalability and pro-activity to the work load change.  

One major concern in designing this distributed MAB MSFC system is how to ensure all 
the agents in the system be synchronized at any time when they need interact or exchange data. In 
a distributed system, the environment information is spread out among the processors involved in 
the system. An agent doesn’t know other agent information if it is not informed, it has to 
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communicate with other agents to collect enough information, does an exhaustive search to find 
out which agents are located within its range, and then calculates the force that it is pushed to 
travel based on its neighbor agents’ information. All these require that each agent in the system 
have a global view of other agents’ status information.  

There are two basic communication schemes to update the agent’s information on 
different processors. The easiest communication scheme to implement is broadcast. As shown in 
Figure 2(a), each agent in the system broadcast its status information to all other agents wherever 
they are located in the same node or different nodes. Each agent will also use the information it 
received from other agents’ broadcast to find out its neighbor boid mates and calculate the next 
moving velocity. In this scheme, each agent has a global view of the entire system status. 
However, each broadcast will use a lot of bandwidth and make the network bandwidth in a 
computer cluster become a bottleneck of the system as the agent number increases. Another 
scheme is the location proxy. As shown in Figure 2(b), there is a location proxy agent on each 
node. Each agent will only inform its status to the location proxy agent in the same node. The 
agent also inquires the location proxy agent to find out its neighbor mates. At every step, after 
collecting the status of all agents that located in the same node, location proxy agents will 
broadcast this information to other proxy agents that located on different nodes, which enable the 
location proxy agent on each node to have a global view of the whole system.  

 

   
(a) Broadcast    (b) Location Proxy 

Figure 2: The architectures of different communication schemes 
 

6. Experiments and Results 
6.1 Multi-Agent Platform 

The distributed MSFC algorithm is implemented on a Java Agent DEvelopment 
Framework (JADE) agent platform. JADE is a software framework fully implemented in the Java 
programming language. JADE is a FIPA compliant agent platform. As a distributed agent plate 
form, the JADE agent can be split on several hosts. The OS on each host is not necessary same. 
The only environment requirement is a Java virtual machine (JVM). Each JVM is a basic 
container of agents that provide a complete runtime environment for agents and allow several 
agents to concurrently execute on the same container, JVM. In principle, JADE allows multiple 
JADE containers run on the same host and agents can be deployed on different containers. 
However, our experiments indicate that the communication between agents located in different 
JADE containers is much slower than the communication between agents located in the same 
JADE container. To reduce the communication delay, all agents, including the system agents of 
JADE, are executed on the same container. 
 
6.2 Datasets 

The document dataset used in this report is derived from the TREC-5, TREC-6, and 
TREC-7 collections and represented as a set of vectors. As indicated in the previous session, the 
heuristic nature of MSFC enables this algorithm to continually refine the clustering results and 
quickly react to the change of the document contents. This character makes the algorithm suitable 
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for cluster analyzing dynamic changed document information. In this report, the performance of 
MSFC on clustering dynamic updated document collections is measured. To simulate the 
dynamic updated document collection, the document vector of each agent is periodically updated 
with a new document vector and the old document vector is considered as expired. For easily 
comparing the performance of different scenario, in the experiments, each agent’s document 
feature will be updated for ten times during the entire life of the system execution. In each 
experiment, the system will run 1000 iterations and the average document update gap is 100 
iterations. 

 
6.3 Experiment setup 

In the MSFC distributed implementation, each boid is implemented as a JADE agent. 
Each agent has the ability to calculate its moving velocity based on the four action rules as 
discussed in previous sessions. Each agent carries a feature vector representing a document vector. 
The environment used in the experiment consists of a continuous 2D plane, in which each boid is 
placed randomly on a grid within a 4000×4000 squire unit area. All experiments were carried out 
on an experiment Linux cluster machine. The cluster machine consists of one head node, ASER 
and three cluster nodes, ASER1, ASER2, and ASER3, which are connected with Gigabit Ethernet 
switch. Each node contains one 2.4G Intel Pentium IV processor and 512M memory. To 
graphically display the usage of CPU and network bandwidth of each node in the computer 
cluster, we used Linux cluster management software, LCM (http://linuxcm.sourceforge.net/). This 
software can real-time graphically display all cluster nodes’ processor and network usage.   
 
6.4 Experiment 1: Communication Schemes.  

In this experiment, we compared the performance of different communication schemes 
for boid agents exchanging the environment information when flying in a virtual space. Two 
communication scheme simulations, broadcast and location proxy are implemented in the 
experiment. The simulation is executed on a single cluster node, ASER1. To measure the 
performance, we utilize a starter agent which initiates the boid agent process and measures the 
consumption time. The running time for different numbers of agents is recorded using java’s 
System.currentTimeMillis() method and the unit is millisecond. Both simulations are executed for 
ten times. The reported results are average time over 10 simulation runs of 1000 cycle each. The 
time reported does not include the overhead of starting and finishing agents, only the time 
consumed between when the boids started flying in the 2D space and when the boids finished 
flying after 1000 cycles. Experimental results are summarized in Figure 3.  
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Figure 3: The performance of different communication schemes 

 
As expected, the broadcast model has the worse performance and the running time 

increases very fast as the agent number increases. In this model, each boid agent has to broadcast 
its current position to other agents in the virtual space at every step and collects the information 
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broadcasted by other agents to find out its neighbor agents. The communication complexity is 
O((n-1)!) at each iteration. As such, the broadcast model is not an efficient solution if a large 
amount of boid agents are simulated. In the location proxy scheme, a location proxy agent is built 
in the simulation. All boid agents will report their new position to the location proxy agent once 
they move to a new place. The boid agent also inquires the location proxy agent for its nearby 
boid agent mates instead of searching by itself. In this communication scheme, boid agents do not 
communicate with each other. This scheme will largely reduce the communication within the 
agent group. The communication complexity is O(2n). However, the workload of the location 
proxy agent is largely increased because calculating each agent’s nearby neighbors has to be 
completed by the location proxy agent instead of each boid agent. In a distributed environment, 
this means all boid agents have to wait for the location proxy agent to finish the calculation to 
find out their nearby neighbors.  

 

   
(a) (b) 

Figure 4: Location proxy agent deployment mechanisms 
 

6.5 Experiment 2: Location Proxy Agent Deployment Mechanisms.  
Experiment 2 illustrates the impact of different location proxy agent deployment on the 

network bandwidth and load balance in a distributed environment. In experiment 2, three cluster 
nodes, named as ASER1, ASER2, and ASER3, are involved to simulate different agent 
deployment mechanisms in distributed MSFC document clustering. Two kinds of location proxy 
agent deployment mechanisms are tested. In test 1, thirty boid agents are equally deployed on two 
cluster nodes, ASER1 and ASER3. One location proxy agent is executed on the cluster node 
ASER2. All boid agents report their location to the location proxy agent on ASER2 and inquire 
about their neighbor mates’ status. Figure 4(a) shows the architecture of the central location 
proxy agent simulation. In test 2, the deployment of location proxy agents and boid agents 
follows the architecture described in Figure 4(b). In this architecture, all three cluster nodes are 
used for running the boid agents. Simultaneously, each cluster node has one location proxy agent 
in charge of the boid agents’ location. The boid agents on each node report its new position to the 
location proxy agent in its home node. The location proxy agents on each node exchange the 
information with each other to make sure all location proxy agents have the same global view of 
the simulation environment.  

The graphical chats of the CPU and network bandwidth usages of the two tests monitored 
by the LCM software are shown in Figure 5. As shown in the chart of Figure 5(a), the CPU usage 
of ASER2 is 100% because of the heavy workload of the location proxy agent. The CPU usage of 
ASER1 and ASER3 only reach 35% to 50% because most of the time the boid agents are waiting 
for the location proxy agent on node ASER2 to finish the calculation. The difference in CPU 
usage of three nodes indicates the unbalanced workload in the distributed environment. As shown 
in Figure 5(b), since the boid agents are equally distributed on three cluster nodes and each node 
has one location proxy agent, the CPU usage of each nodes are 100% , which indicates the 
workload of three nodes is balanced. 
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(a) One location proxy agent deployed on ASER2 node 

 

 
(b) Three location proxy agents deployed on three nodes 

Figure 5: The CPU and Network usage chats for different location proxy agent 
deployments 

 
6.6 Experiment 3: Performance of the distributed MSFC implementation 

The third experiment is to illustrate the performance enhancement by comparing the 
running time of executing the distributed MSFC implementation on a three-node cluster machine 
and a single processor machine. To reduce the impact of the JADE platform computation 
requirement, in both simulations, the JADE main container runs on the head node of the cluster, 
which does not count as a simulation node. In the distributed model, the boid agents are equally 
distributed on three nodes and each node has one proxy server to collect agent’s position and the 
proxy server on each node will exchange agents’ position information at every step. The 
architecture of the distributed model is same as shown in Figure 4(b). Different numbers of boid 
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agents are tested on both simulations and the boid agent’s execute time to finish 1000 circle is 
recorded. Because the distributed model requires three processes to simulate the document 
clustering, the time is the average consummation time for all agents running on different CPUs 
after 1000 cycles. The experiment results are shown in Figure 6. The “Three nodes” curve line in 
Figure 6 indicates the time consumption of the document clustering simulation executed on the 
three nodes cluster machine. The “One node” curve line indicates the time consummation of the 
document clustering simulation executed on one single node machine.  

As shown in Figure 6, when the total boid agent number is below 100, the three nodes 
simulation didn’t cut the total running time to one third of the total time of the simulation on a 
single processor machine because of the overhead for agent status updating. However, the 
running time on the single node machine increases faster than that on the three node machine. 
Once the total boid agent number is above 120, the time required for running on the single node 
machine is more than three times that on the three node machine. One possible reason is each 
node has limited memory (512M), when more than 100 agents running on the same node, 
depending on the documents that these agents represent, the memory requirement for the 
simulation may larger than the actual memory of the computer node, which causes the computer 
system to use virtual memory (hard disk space) and the time requirement to finish the simulation 
is largely increased.  Our next step research will focus on 1) improving the boid agent’s document 
feature representing method to reduce the memory requirement, 2) testing the performance the 
MSFC approach on a large number of cluster nodes and documents, and 3) building self-adaptive 
boid agents that can mobile between nodes to automatically balance the workload of each cluster 
node. 
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7. Conclusion 

In this study, we proposed a bio-inspired clustering model MFSC and presented a distributed 
multi-agent MSFC approach for dynamic document clustering analyzing. In this approach, each 
document in the dataset is represented by a boid agent. Each agent follows four simple local rules 
to move in the virtual space. Agents following these simple local rules emerge a complex global 
behavior of the entire flock and eventually the agents that carrying document belong to the same 
class will gradually merge together to form a flock. The advantage of the MSFC clustering 
algorithm is its heuristic principle of the flock’s searching mechanism. This heuristic searching 
mechanism helps boid agents to quickly form a flock and react to the change of any individual 
document. Since the boid agent in the algorithm continues to fly in the virtual space and join the 
flock it belongs to, new results can be quickly re-generated when an information stream is 
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continually fed into the system. This approach is implemented on a JADE agent platform and 
tested on a three nodes cluster machine. Each JADE agent represents one boid agent in this 
approach. All agents are evenly deployed on different nodes in a distributed computing 
environment. Since each boid agent need to find out the location of other agents located in its 
nearby area, the agents’ location information need to be exchanged at each iteration. To reduce 
the communication load of the location information exchange within boid agents, on each node, a 
location proxy agent is introduced to maintain the agents’ location and synchronizing the status 
between nodes in the cluster machine. Our experimental results showed that the clustering 
process running on the three nodes is much faster than the process on a single node.  

The MSFC algorithm can be used for clustering dynamical changed text information stream. 
It can also generate better results than the K-means clustering algorithm and another bio-inspired 
clustering algorithm, the Ant clustering algorithm, for clustering static document collection. 
However, the MSFC implementation in our experiment requires much more computational time 
and resources than the K-means implementation. In this paper, we presented a multi-agent 
distributed scheme to implement MFSC algorithm on distributed cluster machine to reduce the 
computational load of each single node. This multi-agent implementation can largely increase the 
MSFC clustering performance but still need long time when it is used to cluster large amount of 
text information stream. One reason is each boid agent need to be represented by one JADE agent 
and the JADE agent that we used in the experiment is a “heavy” agent, which consumes a large 
amount of computational resources when a great number of JADE agents are running 
simultaneously. Future work will consider the “light” agent implementation and use one “light” 
agent to represent all boid agents deployed on each node. That will largely reduce the 
computational resources required at each node and make the clustering of a large amount of 
document collections possible.  
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