
M. Klusch, M. Rovatsos, and T. Payne (Eds.): CIA 2006, LNAI 4149, pp. 124 – 137, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Distributed Agent Implementation of Multiple Species
Flocking Model for Document Partitioning Clustering

Xiaohui Cui and Thomas E. Potok

Oak Ridge National Laboratory
Oak Ridge, TN 37831-6085

{Cuix, potokte}@ornl.gov

Abstract. The Flocking model, first proposed by Craig Reynolds, is one of the
first bio-inspired computational collective behavior models that has many
popular applications, such as animation. Our early research has resulted in a
flock clustering algorithm that can achieve better performance than the K-
means or the Ant clustering algorithms for data clustering. This algorithm
generates a clustering of a given set of data through the embedding of the high-
dimensional data items on a two-dimensional grid for efficient clustering result
retrieval and visualization. In this paper, we propose a bio-inspired clustering
model, the Multiple Species Flocking clustering model (MSF), and present a
distributed multi-agent MSF approach for document clustering.

Keywords: Swarm, Bio-inspired, Clustering, Agent, Flocking, VSM.

1 Introduction

Currently, more and more digital document data is being generated as part of the
ubiquitous and pervasive use of computing systems, information systems, and sensor
systems. It is a challenge to efficiently and effectively analyze this data. Clustering
analysis is a descriptive data mining task, which involves dividing a set of objects into a
number of clusters. The motivation behind clustering a set of data is to find inherent
structure inside the data and expose this structure as a set of groups [1]. The data objects
within each group should exhibit a large degree of similarity while the similarity among
different clusters needs be minimal [9]. Document clustering is a fundamental operation
used in unsupervised document organization, automatic topic extraction and information
retrieval. It provides a structure for organizing a large body of text for efficient browsing
and searching. There are two major clustering techniques: partitioning and hierarchical
[9]. Many document clustering algorithms can be classified into these two groups. In
recent years, it has been recognized that the partitioning techniques are well suited for
clustering a large document dataset due to their relatively low computational
requirements [18]. The best-known partitioning algorithm is the K-means algorithm and
its variants [17]. This algorithm is simple, straightforward and based on the firm
foundation of analysis of variances. One drawback of the K-means algorithm is that the
clustering result is sensitive to the selection of the initial cluster centroids and may
converge to the local optima, instead of the global one. The other limitation of the K-
means algorithm is that it generally requires a prior knowledge of the probable number

 A Distributed Agent Implementation of MSF Model 125

of clusters for a document collection. Therefore, there is a demand for more efficient
algorithms for document clustering.

New algorithms based on biological models, such as ant colonies, bird flocks, and
swarm of bees etc., have been invented to solve problems in the field of computer
science. These algorithms are characterized by the interaction of a large number of
agents that follow the same rules and exhibit complex, emergent behavior that is
robust with respect to the failure of individual agents. The Flocking model is one of
the first collective behavior models that have been applied in popular applications,
such as animation. In addition to being used to simulate group motion, which has been
used in a number of movies and games, The Flocking model has already inspired
researches in time varying data visualization [12, 20] and spatial cluster retrieval [6,
7]. In this paper, we propose a bio-inspired clustering model, the Multiple Species
Flocking clustering model (MSF), and present a distributed multiple agent MSF
approach for dynamic updated text clustering.

The remainder of this paper is organized as follows: Section 2 provides a general
overview of the basic Flocking model. A new multiple species flocking (MSF) model
is proposed and a MSF model clustering algorithm is described in section 3. In section
4, a Multi-Agent Scheme for Distributed Dynamic Document Clustering is presented.
Section 5 provides detailed experimental design, setup and results in comparing the
performance of the multi-agent implementation for clustering the dynamic updated
document collection on the cluster computer and a single processor computer. Section
6 describes the related works in the traditional and bio-inspired document clustering
area. The conclusion is in Section 7

2 Modeling of Flocking Behavior

Social animals or insects in nature often exhibit a form of emergent collective
behavior known as ‘flocking’. The Flocking model is a bio-inspired computational
model for simulating the animation of a flock of entities. It represents group
movement as seen in the bird flocks and the fish schools in nature. In this model, each
individual makes its movement decisions on its own according to a small number of
simple rules that it reacts to its neighboring members in the flock and the environment
it senses. These simple local rules of each individual generate a complex global
behavior of the entire flock. The basic Flocking model was first proposed by Craig
Reynolds [14], in which he called each individual as “boid”. This model consists of
three simple steering rules that each boid need to execute at each instance over time:
(1) Separation: Steering to avoid collision with other boids nearby; (2) Alignment:
Steering toward the average heading and match the velocity of the neighbor flock
mates (3) Cohesion: Steering to the average position of the neighbor flock mates.

As shown in Figure 1, in the circled area of Figure 1(a), 1(b) and 1(c), the boid’s
(located in the center of the small circle with grey background) behavior shows how a
boid reacts to other boids’ movement in its local neighborhood. The degree of locality
is determined by the range of the boid’s sensor (The semi-diameter of the big circle).
The boid does not react to the flock mates outside its sensor range because a boid
steers its movement based only on local information. These rules of Reynolds’s boid
flocking behavior are sufficient to reproduce natural group behaviors on the computer.

126 X. Cui and T.E. Potok

(a) Alignment (b) Separation (c) Cohesion

Fig. 1. The three basic rules in the boid

3 The Multiple Species Flocking (MSF) Model

Our early experiments [3] indicate these three rules in Reynolds’s flocking model will
eventually result in all boids in the simulation forming a single flock. It can not
reproduce the real phenomena in the nature: the birds or other herd animals not only
keep themselves within a flock that is composed of the same species or the same
colony creatures, but also keep two or multiple different species or colony flocks
separated. To simulate this nature phenomenon, we propose a new Multiple Species
Flocking (MSF) model to model the multiple species bird flock behaviors. In the MSF
model, in addition to these three basic action rules in the Flocking model, a fourth
rule, the feature similarity rule, is added into the basic action rules of each boids to
influence the motion of the boids. Based on this rule, the flock boid tries to stay close
to these boids that have similar features and stay away from other boids that have
dissimilar features. The strength of the attracting force for similar boids and the
repulsion force for dissimilar boids is inversely proportional to the distance between
the boids and the similarity value between the boids’ features.

In the MSF model, we use the following mathematical equations to illustrate these
four action rules for each boid:

Alignment Rule:

∑=⇒≥∩≤
n

x
xarbxbx v

n
vdPPdPPd

1
),(),(21 . (1)

Separation Rule:

∑ +
=⇒≤

n

x bx

bx
srbx PPd

vv
vdPPd

),(
),(2 . (2)

Cohesion Rule:

∑ −=⇒≥∩≤
n

x
bxcrbxbx PPvdPPdPPd)(),(),(21 . (3)

Feature Similarity Rule:

∑ −−
=

n

x bx

bx
ds PPd

PPTXBS
v

),(

)(*)),((
 . (4)

 A Distributed Agent Implementation of MSF Model 127

where var , vsr , vcr and vds are velocities driven by the four action rules,),(bx PPd is the

distance between boid B and its neighbor X, n is the total number of the boid B’s local
neighbors, vb and vx is the velocity of boid B and X, d1 and d2 are pre-defined

distance values and 21 dd ,
bx PP − calculates a directional vector point. S(B,X) is the

similarity value between the features of boid B and X. T is the threshold for
separating similarity and dissimilarity boids.

(a)

(b)

Fig. 2. Multiple species bird flocking simulation

To achieve comprehensive flocking behavior, the actions of all four rules are
weighted and summed to give a net velocity vector demanded for the active flock
boid.

dsdscrcrararsrsr vwvwvwvwv +++= . (5)

where v is the boid’s velocity in the virtual space and dddscrarsr wwwww ,,,, are pre-

defined weight values.
Figure 2 shows the result of our multiple species bird flock simulation by using

multiple agents system in which the MSF model is implemented in each simulation
agent. In this simulation, there are four different boid species and each species have
200 boids. We use four different colors, green, red, blue and black, to represent
different species. All together, 800 boids are simulated in the environment. At the
initial stage, each boid is randomly deployed in the environment as shown in Figure
2(a). Each color dot represents one boid agent. There is no central controller in the
simulation. Each boid agent can only sense other boids within a limited range and
move in the simulation environment by following these four action rules of the MSF
model. Although there is no intention for each boid to form a same species group and
to separate different species from each other, after several iterations, as shown in
Figure 2(b), the boids in the same species (shown as in same color) are grouped
together and different species are separated. This phenomenon represents an emergent
clustering behavior.

128 X. Cui and T.E. Potok

4 The MSF Clustering Algorithm

The MSF model could offer a new way to cluster datasets. We applied the MSF model
to developing a document collection clustering algorithm called MSF Clustering
algorithm. The MSF clustering algorithm uses a simple and heuristic way to cluster
input data, and at the same time, maps the data to a two-dimensional (2D) surface for
easy retrieval and visualization of the clustering result, processing both tasks
simultaneously. In the MSF clustering algorithm, we assume each document vector is
projected as a boid in a 2D virtual space. Each document vector is represented as a
feature of the boid. Following the simple rules in MSF model, each boid determines its
movement by itself in the virtual space. Similar to the bird in the real world, the boids
that share similar document vector features (same as the bird’s species and colony in
nature) will automatically group together and became a boid flock. Other boids that
have different document vector features will stay away from this flock. In this
algorithm, the behavior (velocity) of each boid is only influenced by the nearby boids.
The boid’s four MSF action rules react to this influence and generate the boid’s new
moving velocity. Although this influence on each bird is locally, the impacts on the
entire boid group is global. After several iterations, the simple local rules followed by
each boid results in generating a complex global behavior of the entire document flock,
and eventually a document clustering result is emerged.

We evaluated the efficiency of the MSF algorithm and the K-means algorithm on
document collection that includes 112 recent news articles collected from the Google
news. This news article collection has been categorized by human and manually
clustered into 11 categories. For the purpose of comparing, the Ant document
clustering [8] and the K-means clustering algorithms were implemented by Java
language and applied to the same real document collection dataset, respectively. The
K-means algorithm implementation was given the exact clustering result number as the
prior knowledge. Our early research [3] shows that the Ant clustering algorithm can
not come out any useful result if the algorithm only given a limited number of iteration
(300 iterations) for refining the result. In this experiment, each algorithm was given
100 fixed iterations to refine the clustering result and only the MSF clustering
algorithm and K-means algorithm can generate reasonable results. As shown in Figure
2(b), the clustering results generated by the MSF clustering algorithm can be easily
recognized by human eyes because of their visual characteristic. In our experiments,
the clustering result of the MSF clustering algorithm is retrieved by human looking at
the visual flock picture that generated by the virtual boids on the screen. We compared
the average results of these two algorithms from ten separate experiments. The results
of the clustering algorithm were evaluated by comparing it with the prior knowledge of
the classification of the document collection. The F-measure was used as the quality
measure. The results are listed in Table 1. The results indicate that the flocking
algorithm achieves better result compared to the K-means for document clustering
although the K-means algorithm has prior knowledge of the exact cluster number.

Table 1. Performance results of the K-means and MSF clustering algorithms

Algorithms Average cluster result number Average F-measure value
MSF 9.105 0.7913
K-means (11) 0.5632

 A Distributed Agent Implementation of MSF Model 129

5 Distributed Agent Implementation of MSF Clustering Algorithm

The MSF clustering algorithm can achieve better performance in document clustering
than the K-means and the Ant clustering algorithm. This algorithm can continually
refine the clustering result and quickly react to the change of individual data. This
character enables the algorithm suitable for clustering dynamic changed document
information, such as the text information stream. However, the computational
requirement for real-time clustering a large amount of text collection is high. In the
information society of today, tremendous amounts of text information are continuously
accumulated. Inevitably, the MSF clustering algorithm approach of using single
processor machine to cluster the dynamic text stream requires a large amount of
memory and a faster execution CPU. Since the decentralized character of this
algorithm, a distributed approach is a very natural way to improve the clustering speed
of this algorithm. In this paper, we present a distributed multi-agent based flocking
approach for clustering analysis of dynamic documents and balance the computation
load on cluster nodes.

5.1 Distributed Agent Scheme for Document Clustering

In the MSF clustering algorithm, the document parse, similarity measurement and boid
moving velocity calculation are the most computational consumption parts. The
distributed implementation can divide these computational tasks into smaller pieces that
may be scheduled to concurrently run on multiple processors. In order to achieve better
performance using distributed computing, several issues must be examined carefully
when designing a distributed solution. First is the load balance. It is important to keep
load balancing among processing nodes to make sure each node have approximately the
same workload. The environment state synchronization is the second issue need to be
considered. It is very important for a distributed implementation to develop a
synchronization algorithm, which is capable of maintaining causality. Third is reducing
the communication between nodes, including communication overhead of the
environment state synchronization and control of message exchange between nodes.
Based on these requirements, we developed a distributed agent based implementation of
the MSF clustering algorithm for clustering analysis of the text datasets. In this
distributed agent based implementation, boids are modeled and implemented in terms of
agents, which makes boids pro-active, adaptive and communicable. The distributed
agent based implementation supports distributed load balance in a very natural way.
Since each boid agent is implemented to perform document retrieval, parse, similarity
comparison and moving velocity calculation independently, it is straight-forward to
have different agents run on different machines to achieve a load balance. Since agent
can be added, removed or moved to other machine without interrupting other agent’s
running, the system can be scalability and pro-activity to the change of work load.

One major concern in designing this distributed agent based MSF implementation
is how to ensure agents be synchronized at any time when they must interact or
exchange data. In a distributed system, environment information is spread out among
the processors involved in the system. An agent doesn’t know other agent’s
information if it is not informed, it has to commute with other agents to collect
enough information, does an exhaustive search to find out which agents are located

130 X. Cui and T.E. Potok

within its range, and calculates the force that it is pushed to travel based on it’s
neighbor agents’ information. All these require that each agent in the system have a
global view of other agents’ status information. As such, it is necessary to develop a
communication schemes to update the agent’s information on different processors.
One easy communication scheme is broadcast. As shown in Figure 3(a), each agent in
the system broadcast its status information to all other agents wherever they are
located in the same node or different nodes. Each agent will also use the information
it received from other agents’ broadcast to find out its neighbor boid mates and
calculate the next moving velocity. In this scheme, each agent has a global view of the
entire system status. However, the broadcast will use so much bandwidth that makes
the network bandwidth in a computer cluster become a bottleneck of the system when
the agent number increased. In this report, we proposed an environment status sharing
scheme by using location proxy agent. As shown in Figure 3(b), there is a location
proxy agent on each node. Each agent will only inform its status to the location proxy
agent in the same node. The agent also inquires the location proxy agent to find out its
neighbor mates. At every time step, after collecting the status of all agents that located
in the same host, location proxy agents will broadcast this information to other proxy
agents that located on different nodes, which enable the location proxy agent on each
node to have global view of the whole system.

(a) Broadcast

(b) Location Proxy

Fig. 3. The architectures of different communication schemes

5.2 Datasets

The document dataset used in this study is derived from the TREC-5, TREC-6, and
TREC-7 collections [10] and represented as a set of vectors X={x1, x2, …., xn}, where
the vector xi corresponds to a single object and is called “feature vector” that contains
proper features to represent the object. The feature value is represented using the
Vector Space Model (VSM) [16]. In this model, the content of a document is
formalized as a point in a multi-dimensional space and represented by a vector x, such

as x= },.....,{ 21 nwww , where wi(i = 1,2,…,n) is the term weight of the term ti in one

document. The term weight value wi represents the significance of this term in a
document. To calculate the term weight, the occurrence frequency of the term within
a document and in the entire set of documents needs to be considered. The most

 A Distributed Agent Implementation of MSF Model 131

widely used weighting scheme combines the Term Frequency with Inverse Document
Frequency (TF-IDF) [15]. The TF-IDF weight wij of term i in document j is given in
following equation:

)(log*)1(log* 22
ji

jijijiji df

n
tfidftfw +== . (6)

Where tfji is the number of occurrences of term i in the document j; dfji indicates the
term frequency in the document collections; and n is the total number of documents in
the collection.

Calculation of the TF-IDF weight value needs the knowledge of word frequency in
the entire document collection and the total number of documents in the collection. If
a single document is added or removed from the document collection, the TF-IDF
scheme will need recalculate the TF-IDF value of all documents processed. It is
difficult to use the TF-IDF scheme to convert streaming textual information into
vectors. To address these issues, a modified TF-IDF scheme, Term Frequency /
Inverse Corpus Frequency (TF-ICF) [13], is adopted to calculate the term weight
value of each term in the document vector. In TF-ICF scheme, the TF portion is same
as the TF portion in TF-IDF. The IDF calculation that uses document collection in
TF-IDF is replaced with information gathered from a large, static corpus of
documents in TF-ICF. The corpus includes more than 250,000 documents that contain
almost all of the typically used English words. The weight wij of term i in the
document j can be calculated by the following TF-ICF equation:

())
1

1
(log*1log 22 +

++=
i

jiji C

n
tfw . (7)

where Ci is the number of documents in the corpus C where term i occurs.
Before translating the document collection into TF-ICF VSM, the very common

words (e.g. function words: “a”, “the”, “in”, “to”; pronouns: “I”, “he”, “she”, “it”) are
stripped out completely and different forms of a word are reduced to one canonical
form by using Porter’s algorithm [11].

As we indicated in the previous session, the nature of the MSF clustering algorithm
enable the algorithm continually refine the clustering results and quickly react to the
change of the document contents. This character makes the algorithm suitable for
cluster analyzing dynamic changed document information. In this report, the
performance of these algorithms on clustering dynamic updated document collections
is studied. To simulate the dynamic updated document collection, the document
vector of each agent is periodically updated with a new document vector and the old
document vector is considered as expired. To easily compare the performance of
different scenario, in this study, each agent’s document feature will be updated for ten
times during the entire life of the system execution. In each experiment, the system
will run 1000 cycles and the average document update gap is 100 time-steps.

5.3 Multi-agent Platform

The distributed MSF clustering algorithm is implemented on a (Java Agent
DEvelopment Framework (JADE) agent platform. JADE is a software framework

132 X. Cui and T.E. Potok

fully implemented in the Java language and is a FIPA compliant agent platform. As a
distributed agent plate form, the JADE agent can be split on several hosts. The OS on
each host is not necessary same. The only required environment is a Java virtual
machine (JVM). Each JVM is a basic container of agents that provide a complete run
time environment for agents and allow several agents to concurrently execute on the
same container, JVM.

5.4 Experimental Design and Results

The simulation experiment in this study is to illustrate the performance enhancement
by comparing the run time of executing the MSF clustering distributed agent
implementation on a three-node cluster machine and a single processor machine.

In the MSF clustering distributed agent implementation, each boid is implemented
as a Jade agent. Each agent has the ability to calculate its moving velocity based on the
four actions rules as we discussed in the previous session. Each agent carries a feature
vector representing a document vector. The environment used in the experiment
consists of a continuous 2D plane, in which boid are placed randomly on a grid within
a 4000×4000 squire unit area. All experiments were carried out on an experiment
Linux computer cluster machine. The cluster machine consists of one head node,
ASER and three cluster nodes, ASER1, ASER2, and ASER3, which are connected
with a Gigabit Ethernet switch. Each node contains a single 2.4G Intel Pentium IV
processor and 512M memory. To compare the performance, we utilize a starter agent
that initiates the boid agent process and measures time. The running times for different
number of agents is recorded using java’s System.currentTimeMillis() method and the
unit is milliseconds.

0

50000

100000

150000

200000

250000

300000

0 5 10 15 20 25 30 35 40 45

The number of agents

T
im

e
(m

s)

1 container 2 containers

Fig. 4. The running time for boid agents deployed in one JADE container and two JADE
containers

 A Distributed Agent Implementation of MSF Model 133

JADE allows multiple JADE containers (JVM) running on the same host while
agents can be deployed in different containers. Our preliminary experiment is to test
the performance impact when the boid agents running in multiple JADE containers.
The running time of a different number of boid agents executed in one container or
two containers are measured and recorded, separately. The experiment result is shown
in Figure 4. As shown in this figure, the running time for the same amount of agents
in a single container is much less than that in two containers. The main reason is that
the communication between agents located in different JADE containers is much
slower than the communication between agents located in the same JADE container.
To reduce the communication delay, in the following experiments, all agents located
in same host are assigned in the same container. At the same time, to reduce the
impact of the JADE system computational requirement, in all simulation experiments,
the main JADE system container runs on the head node of the cluster, which is not
counted in the simulation nodes. Every simulation experiment will be executed for ten
times. Reported results are the average time over 10 simulation runs of 1000 cycle
each. The running time does not include the time for starting and finishing agents. It
only counts the time consumed during boid agents start moving in the 2D space and
stop moving after 1000 cycles.

(a)

(b)

Fig. 5. The architecture of the single processor model and the distributed model

134 X. Cui and T.E. Potok

In the single processor model, all boid agents are executed on one cluster node. In
the distributed model, the boid agents are equally distributed on three nodes, each
node has one location proxy agent to collect the agent position and the location proxy
agent on each node will exchange agent position information at every step. The
architecture of the single processor model and the distributed model are represented in
Figure 5(a) and 5(b), respectively. Different numbers of boid agents are tested on both
simulation and the boid agent’s execution time to finish 1000 circle is recorded.
Because the distributed model requires three processes to simulate the document
clustering, the time is the average time consumption for all agents running on
different node after 1000 cycles. The experiment results are shown in Figure 6. The
“Three nodes” curve line in Figure 6 indicates the time consumption of the document
clustering simulation executed on the three nodes cluster machine. The “One node”
curve line indicates the time consumption of the document clustering simulation
executed on the single node machine.

0

500000

1000000

1500000

2000000

0 50 100 150 200

The number of agents

R
un

ni
ng

 ti
m

e
(m

s)

Three nodes One node

Fig. 6. The running time for 3 node cluster machine and one single processor machine

As shown in Figure 6, when the number of agents is 30, there is no significant
difference on consumption time between the three node cluster machine and the single
processor machine. When the number of agents is more than 60, it takes the three
node cluster machine much less time than the single node machine. Before the total
boid agent number reach 120, the three nodes simulation didn’t cut the total running
time into one third of the total time of the single node machine because of the
communication overhead when location proxy agent updating status with other
location proxy agents located on the other nodes. However, the running time
consumption on the single node machine increases faster than that on the three node
machine. Once the total boid agent number researches 120, the time required for
running on the single node machine is more than three times of that on the three node
machine. One possible reason is each node having limited memory (512M). In single
node model, when more than 120 agents running on single node, depending on the
documents that these agents represent, the memory requirement for the simulation

 A Distributed Agent Implementation of MSF Model 135

may be larger than the actual memory of the computer node, which cause the
computer system use the virtual memory (hard disk space) and the time requirement
for finishing the simulation is largely increased. In the distributed model, the boid
agents are evenly deployed on three different cluster nodes. Each node only have one
third of the total boid agents and the memory requirement is related smaller than
single node model. This will avoid the agent system exceed the node’s physical
memory limitation.

6 Related Works

To deal with the limitations existed in the traditional partition clustering methods, in
recent years, a number of computer scientists have proposed several approaches
inspired from biological collective behaviors to solve the clustering problem, such as
Genetic Algorithm (GA) [2], Particle Swarm Optimization (PSO) [4, 19], Ant
clustering [8, 22] and Self-Organizing Maps (SOM) [21]. Within these clustering
algorithms, the Ant clustering algorithm is a partitioning algorithm that does not
require a prior knowledge of the probable number to clusters or the initial partition.
The Ant clustering algorithm was inspired by clustering of corpses and eggs observed
in the real ant colony. Deneubourg et al [5] proposed a “Basic Model” to explain the
ants’ behavior of piling corpses and eggs. In their study, a population of ant-like
agents randomly moved in a 2D grid. Each agent only follows one simple rule:
randomly moving in the grid and establishing a probability of picking up the data
object it meets if it is free of load or establishing a probability of dropping down the
data object if it is loading the data object. After several iterations, a clustering result
emerges from the collective activities of these agents. Wu [22] and Handl [8]
proposed the use of the Ant clustering algorithms for document clustering and
declared that the clustering results from their experiments are much better than those
from the K-means algorithm. However, in the Ant clustering algorithm, clustered data
objects do not have mobility by themselves. The movements of data objects have to
be implemented through the movements of a small number of ant agents, which will
slow down the clustering speed. Since each ant agent, carrying an isolated data object,
does not communicate with other ant agents, it does not know the best location to
drop the data object. The ant agent has to move or jump randomly in the grid space
until it finds a place that satisfies its object dropping criteria, which usually consumes
a large amount of computation time. In this paper, we present a novel MSF clustering
approach for document clustering analysis. Similar as the Ant clustering algorithm,
the MSF clustering algorithm is a partitioning algorithm and does not require a prior
knowledge of the cluster number in the datasets. It generates a clustering of a given
set of data through projecting of the high-dimensional data items on a two-
dimensional grid for easy retrieval and visualization of the clustering result. However,
the MSF clustering algorithm is more efficient than the Ant clustering algorithm
because each document object in the collection is projected as an agent moving in a
virtual space, and each agent’s moving activity is heuristic as opposed to the random
activity in the Ant clustering algorithm.

136 X. Cui and T.E. Potok

7 Conclusion

In this study, we proposed a new multiple species flocking (MSF) model and
presented a distributed multi-agent approach for the MSF clustering algorithm. In this
algorithm, each document in the dataset is represented by a boid agent. Each agent
follows four simple local rules to move in the virtual space. Agents following these
simple local rules emerge complex global behaviors of the whole flock and eventually
the agents that carrying document belong to the same class will gradually merge
together to form a flock. All agents are evenly deployed on different nodes in a
distributed computing environment for load balancing purposes. On each node, a
location proxy agent is introduced for maintaining the agents’ location and
synchronizing the status between nodes in the cluster machine.

The advantage of the MSF clustering algorithm is the heuristic principle of the
flock’s searching mechanism. This heuristic searching mechanism helps bird agents
quickly form a flock and reactive to the change of any individual document. Since the
bird agent in the algorithm continues fly in the virtual space and join the flock it
belongs to, new results can be quickly re-generated when the information stream is
continually feed into the system.

Acknowledgments. Prepared by Oak Ridge National Laboratory, P.O. Box 2008,
Oak Ridge, Tennessee 37831-6285, managed by UT-Battelle, LLC, for the U.S.
Department of Energy under contract DE-AC05-00OR22725.

References

1. Anderberg, M.R.: Cluster Analysis for Applications. Academic Press, Inc., New York
(1973)

2. Casillas, A., De Gonzalez Lena, M.T., Martinez, R.: Document clustering into an
unknown number of clusters using a genetic algorithm. 6th International Conference, TSD
2003, Sep 8-12 2003, Vol. 2807. Springer Verlag, Heidelberg, D-69121, Germany, Ceske
Budejovice, Czech Republic 43-49

3. Cui, X., Gao, J., Potok, T.E.: A Flocking Based Algorithm for Document Clustering
Analysis. Journal of System Architecture (2006)

4. Cui, X., Potok, T.E.: Document Clustering Analysis Based on Hybrid PSO+K-means
Algorithm. Journal of Computer Sciences Special Issue (2005) 27-33

5. Deneubourg, J.L., Goss, S., SendovaFranks, N., Detrain, C., Chretien, L.: The dynamics of
collective sorting robot-like ants and ant-like robots. Proceedings of the first international
conference on simulation of adaptive behavior on From animals to animats. MIT Press,
Cambridge, MA, USA 356-363

6. Folino, G., Forestiero, A., Spezzano, G.: Discovering clusters in spatial data using swarm
intelligence. 7th European Conference, ECAL 2003, Sep 14-17 2003, Vol. 2801. Springer
Verlag, Heidelberg, Germany, Dortmund, Germany 598-605

7. Folino, G., Spezzano, G.: Sparrow: A Spatial Clustering Algorithm using Swarm
Intelligence. 21st IASTED International Multi-Conference on Applied Informatics, Feb
10-13 2003, Vol. 21. Int. Assoc. of Science and Technology for Development, Calgery -
Alberta, T3B OM6, Canada, Innsbruck, Austria 50-55

 A Distributed Agent Implementation of MSF Model 137

8. Handl, J., Knowles, J., Dorigo, M.: Ant-based clustering and topographic mapping.
Artificial Life 12 (2006) 35-61

9. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys
31 (1999) 264-323

10. NIST: TREC (Text Retrieval Conference). http://trec.nist.gov (1999)
11. Porter, M.F.: An algorithm for suffix stripping. Program 14 (1980) 130-137
12. Proctor, G., Winter, C.: Information flocking: data visualisation in virtual worlds using

emergent behaviours. Virtual Worlds First International Conference, VW'98 Proceedings,
1-3 July 1998. Springer-Verlag, Paris, France 168-176

13. Reed, J.: TF-ICF: A New Term Weighting Scheme for Clustering Dynamic Data Streams.
Technical Report. Oak Ridge National Laboratory (2006)

14. Reynolds, C.W.: Flocks, Herds, and Schools: A Distributed Behavioral Model. Computer
Graphics (ACM) 21 (1987) 25-34

15. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Information Processing & Management 24 (1988) 513-523

16. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Cornell
Univ., Ithaca, NY, USA (1974) 34

17. Selim, S.Z., Ismail, M.A.: K-Means-Type Algorithms: A Generalized Convergence
Theorem and Characterization of Local Optimality. IEEE Transactions on Pattern
Analysis and Machine Intelligence PAMI-6 (1984) 81-87

18. Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering techniques.
KDD Workshop on Text Mining

19. Van D. M., D.W., Engelbrecht, A.P.: Data clustering using particle swarm optimization.
2003 Congress on Evolutionary Computation, 8-12 Dec. 2003, Vol. Vol.1. IEEE,
Canberra, ACT, Australia 215-220

20. Vande Moere, A.: Information flocking: time-varying data visualization using boid
behaviors. Proceedings. Eighth International Conference on Information Visualization, 14-
16 July 2004. IEEE Comput. Soc, London, UK 409-414

21. Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Transactions on
Neural Networks 11 (2000) 586-600

22. Wu, b., Shi, Z.: A clustering algorithm based on swarm intelligence. 2001 International
Conferences on Info-tech and Info-net. Proceedings, 29 Oct.-1 Nov. 2001, Vol. vol.3.
IEEE, Beijing, China 58-66

	Introduction
	Modeling of Flocking Behavior
	The Multiple Species Flocking (MSF) Model
	The MSF Clustering Algorithm
	Distributed Agent Implementation of MSF Clustering Algorithm
	Distributed Agent Scheme for Document Clustering
	Datasets
	Multi-agent Platform
	Experimental Design and Results

	Related Works
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

