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Analyzing and clustering large scale data set is a complex problem. One explored method of solving this
problem borrows from nature, imitating the flocking behavior of birds. One limitation of this method
of data clustering is its complexity O(n®). As the number of data and feature dimensions grows, it
becomes increasingly difficult to generate results in a reasonable amount of time. In the last few years,
the graphics processing unit (GPU) has received attention for its ability to solve highly-parallel and semi-
parallel problems much faster than the traditional sequential processor. In this paper, we have conducted
research to exploit this architecture and apply its strengths to the flocking based high dimension data

GPU clustering problem. Using the CUDA platform from NVIDIA, we developed a Multiple Species Data

Swarm intelligence
Data clustering
CUDA

Flocking implementation to be run on the NVIDIA GPU. Performance gains ranged from 30 to 60 times
improvement of the GPU over the 3GHz CPU implementation.
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1. Problem statement and background

Cluster analysis is a descriptive data mining task, which
involves dividing a set of data objects into a number of groups,
called clusters. The motivation behind clustering a set of data is
to find its inherent structure and expose that structure as a set
of groups [1]. The data objects within each group should exhibit
a large degree of similarity while the similarity among different
clusters should be minimal [2]. The need for fast, efficient data
analysis has driven the research community to continually develop
and improve data clustering methods.

One method, multiple species flocking clustering [3], a nature-
inspired computational model for simulating the dynamics of
flocks of entities, is used for high dimensional unstructured
data clustering. This method takes an agent-based approach and
relies on emergent organization to effectively cluster data. The
effectiveness of this approach relies on the organization that
arises through a group of agents interacting through simple rules.
In the case of data clustering, similar data sets flock together,
loosely organizing themselves according to subject. This method
has met with success in clustering high dimensional datasets better
than traditional methods such as K-means [3]. Unfortunately the
method is highly computational intensive and requires hours of
computational time to generate acceptable results when analyzing
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more than a few thousands high dimensional datasets at a time.
Our research investigates the possibility of implementing this
algorithm on GPU enhanced machines, thereby reducing the
computational time and bringing the flocking based data clustering
capability to the data analyst’s desktop. The unstructured text
(document) is considering the most complex high dimensional
unstructured data set for information analysis. In this chapter,
we use document clustering as an example for explaining our
implementation of GPU enhanced flocking data clustering.
Document clustering provides a structure for efficiently brows-
ing and searching text. It is a fundamental operation used in unsu-
pervised document organization, automatic topic extraction, and
information retrieval. There are two major clustering techniques:
partitioning and hierarchical [2]. Many document clustering al-
gorithms can be classified into these two groups. Hierarchical al-
gorithms break data into relational trees. This method has high
computational requirements for large data sets. In recent years,
it has been recognized that the partitioning techniques are well
suited for clustering large document datasets due to their relatively
low computational requirements [4]. The best-known partitioning
algorithm is the K-means algorithm and its variants [5]. This al-
gorithm is simple, straightforward and based on the firm founda-
tion of analysis of variances. In 2008, Farivar and his colleagues [6]
implemented K-means on an NVIDIA 8600 GT graphics card us-
ing CUDA and got a 13x performance improvement compared to
a baseline 3 GHz Intel Pentium(R) based PC running the same
algorithm. One drawback of the K-means algorithm is that the clus-
tering result is sensitive to the selection of the initial cluster cen-
troids and may converge to local optima, instead of global ones.
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(a) Alignment.

(b) Separation.

(c) Cohesion.

Fig. 1. The three basic rules in the boid.

Another limitation of the K-means algorithm is that it requires a
prior knowledge of the approximate number of clusters for docu-
ment collection.

In this research project, we implemented the flocking based
data clustering algorithm on an NVIDIA 8800 GTX and compared
the runtime performance of CPU and GPU versions of the algo-
rithm for document clustering. Using an NVIDIA GPU platform we
saw a dramatic 30-60 times improvement over the sequential CPU
implementation. Ultimately, we are working toward illustrating
a low-cost, high-capacity GPU computational platform and pro-
gramming model suitable for most naturally inspired applications.

2. Core technology and algorithms

2.1. Flocking Behavior

Social animals or insects in nature often exhibit a form of emer-
gent collective behavior known as “flocking”. The flocking model
is a biologically inspired computational model for simulating the
animation of a flock of entities. It represents group movement as
seen in flocks of birds and schools of fish. In this model each in-
dividual makes movement decisions without any communication
with others. Instead, it acts according to a small number of simple
rules, dependent only upon neighboring members in the flock and
environmental obstacles. These simple local rules generate a com-
plex global behavior of the entire flock. The basic flocking model
was first proposed by Craig Reynolds [7], in which he referred to
each individual as a “boid”, and consists of three simple steering
rules that each boid needs to execute at each instance over time:
separation (steering to avoid collision with neighbors); alignment
(steering toward the average heading and matching the velocity
of neighbors); cohesion (steering toward the average position of
neighbors). These rules describe how a boid reacts to other boids’
movement in its local neighborhood.

As shown in Fig. 1, in the circled area of Fig. 1(a)-(c), the boid’s
(located in the center of the small circle with gray background)
behavior shows how a boid reacts to other boids’ movement in
its local neighborhood. The degree of locality is determined by
the range of the boid’s sensor. The boid does not react to the
flock mates outside its sensor range. These rules of Reynolds’ boid
flocking behavior are sufficient to reproduce flocking behaviors on
the computer.

It has been shown, however, that these rules alone are not
sufficient to simulate flocking behavior in nature. Our early
experiments [3] indicate these three rules in Reynolds’s flocking
model will eventually result in all boids in the simulation forming
a single flock. It cannot reproduce the real phenomena in nature:
birds or other herd animals not only keep themselves within a flock
that is composed of the same species or the same colony creatures,
but also keep two or multiple different species or colony flocks
separated. To simulate this natural phenomenon, we proposed a

new Multiple Species Flocking (MSF) model [3] to model multiple
species bird flock behaviors. In the MSF model, in addition to
these three basic action rules in the Flocking model, a fourth rule,
the feature similarity rule, is added into the basic action rules of
each boid to influence the motion of the boids. Based on this rule,
the flock boid tries to stay close to these boids that have similar
features and stays away from other boids that have dissimilar
features. The strength of the attracting force for similar boids and
the repulsion force for dissimilar boids is inversely proportional to
the distance between the boids and the similarity value between
the boids’ features. The addition of this rule allows the use of
flocking behavior to organize groups of heterogeneous boids into
homogeneous subgroups.

2.2. MSF document clustering algorithm

The document clustering algorithm that we used in our research
was originally described in [3]. This approach treats documents
as boids and uses the MSF model to cluster based on a similarity
comparison between documents. In the MSF clustering algorithm,
each document is summarized by a feature vector. A similarity
matrix is then built for reference through calculation of the cosine
distance between each document and all other documents. Once
the matrix is calculated all documents are given a random position
and velocity in a two-dimensional plane. The boids that share
similar document vector features (same as the bird species and
colony in nature) will automatically group together and became
a boid flock. Other boids that have dissimilar document vector
features will stay away from this flock. After several iterations,
the simple local rules followed by each boid result in generating
complex global behaviors of the entire document flock. Eventually
a document clustering result emerges.

In the MSF model implementation, we use the following
mathematical equations to illustrate the four action rules for each
boid:

Alignment Rule:

d(Px»Pb)fdlﬁd(Px»Pb)ZCb:
R (1)
Var = ngvx

where v, is velocity driven by alignment rule, d(Px, Py) is the
distance between boid B and its neighbor X, n is the total number
of boid B’s local neighbors, vy is the velocity of boid X, d; and d, are
pre-defined distance values and d; > ds.

Separation Rule:

n 7+E;
d(P,, Py) < d =y — 2
(P, Py) < dp = vy Zd(Px,Pb) (2)

X

where vy, is velocity driven by the separation rule, d, is a pre-
defined distance, v, and v, are the velocities of boid B and X.
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Cohesion Rule:
d(vapb) = dl md(Pme) = d2 -

U_)U:Z(Px_Pb) (3)

X
where v, is velocity driven by cohesion rule, d; and d, are pre-

S —
defined distances and (P, — Py) calculates a directional vector
point.

Feature Similarity Rule: The flock boid tries to stay close to
other boids that have similar features. For the document clustering
algorithm, the boid’s feature is represented by the document
vector. The strength of the attracting force is proportional to the
distance between the boids and the similarity between the boids’
feature values.

n
vas = ) _(S(B.X) x d(Py. Py)) (4)
X
where vy is velocity driven by feature similarity, S(B, X) is the
similarity value between the feature of boid B and X. The flock boid
tries to stay away from other boids that have dissimilar features.
The strength of the repulsion force is inversely proportional to the
distance between the boids and the similarity value between the
boids’ features.

n
1
vdd z S(B, X) x d(P;, Pp) (5)
where vgyq is velocity driven by feature similarity.

In this research, rather than directly using the feature similarity
rule, we nullified the alignment and cohesion rules when S(B, X) <
T. S(B, X) is the similarity value between the features of boid
B and X and T is the similarity threshold. Thus, for dissimilar
boids, separation is the only active rule, causing them to repel one
another.

As indicated in the MSF model, at the initial stage, each
document vector is projected as a boid and randomly deployed in a
2D virtual space. All boids move at a constant speed throughout the
simulation but each boid’s direction changes at each step according
to the flocking algorithm. Our earlier research indicated that the
MSF clustering algorithm can provide more accurate document
clustering results than the K-means and Ant colony Optimization
algorithms [3].

To adapt the document flocking algorithm in a GPU SPMD
environment, we implement the algorithm in two kernels (see
Fig. 2). The first kernel creates a thread for each document boid
pair (n? threads in total) and compares their locations in the
2D virtual space to determine if the distance between them is
within the neighborhood threshold. If the distance is small enough,
a document comparison is initiated. This comparison entails
a reference to the cosine similarity matrix in global memory.
If the distance value retrieved between the two documents is
small enough, the documents are deemed similar and treat each
other as flock mates. In every simulation step, each boid will
determine its new velocity according to the rules listed in the
MSF algorithm. All other boids that are considered in this boids’
neighborhood will contribute to the modification of this boids
velocity. Similar documents contribute to the final velocity of
each using the separation, cohesion, and alignment rules discussed
earlier. Dissimilar documents contribute to the final velocity
of each using only the separation rule. Once each document’s
influence on the rest of the population is calculated, the second
kernel is run. This kernel spawns n threads, each updating the
final velocity and position of a single document. Here we added
some randomness to the simulation; fifteen percent of all final
movement calculations are random. Adding a random element to
the system ensures that documents suitably explore the solution
space in search of other flock mates. From our observations,

Neighborhood Calculation Kernel
and Document Comparison
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. Kernel Call->

---=="Threads -=-----.

Update Pos and Velocity Kernel
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Main()
Kernel Call->

W N
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Fig. 2. Document flocking implementation in CUDA.

we can also see that without this element the system of birds
will degrade to a few clusters of boids flying in circles. Each
new velocity calculation (or random calculation) is normalized
to have a standard magnitude, keeping all boids moving with
constant speed. Additionally, limitations are in place in this kernel
to prevent velocity direction from changing drastically in each
generation. This forces each document to make gradual turns,
exposing it to a larger number of neighbors and more accurately
simulating the behavior of birds. When this kernel is finished
executing, a generation is finished and the cycle begins again.

3. Implementations and evaluations

3.1. Experimental environment and data

In setting up our research we made an attempt to use low cost,
commercially available equipment to help underline the cost and
performance benefits of our approach. All tests that we performed
were run on a single desktop workstation. This machine houses
4 GB of RAM and a single 3.0 GHz Intel core duo. We added an
NIVIDA Geforce 8800 GTX graphics card to the workstation to
enable the use of CUDA. The 8800 GTX contains 16 SIMD processors
and has 768 MB of device memory. All experiments were run under
Red Hat Enterprise Linux.

We compiled the documents used for clustering in our ex-
periments from the TREC TIPSTER-2 data set. The TREC data set
contains Associated Press news articles from 1988. We initially
processed the documents by stripping out XML tags, stop words,
numbers, and punctuation. We then stemmed the document con-
tent using a Porter Stemming algorithm [8]. Finally, we generated
a term frequency list using TF-ICF [9], and normalized these fre-
quencies for direct document comparison. Once document vectors
were produced they were subjected to a dimensionality reduction;
giving all document vectors a constant two-hundred dimensions.
These reduced-dimension vectors were then used to build a cosine
similarity matrix.

3.2. Challenges and solutions

One fundamental challenge of programming in CUDA is
adapting to the Single Program Multiple Data (SPMD) paradigm,
which differs from traditional parallel paradigms in that multiple
instances of a single program act on a body of data. Each
instance of this program uses unique offsets to manipulate
pieces of that data. Data parallelism fits well in this paradigm
while operational parallelism does not. Once the programming
paradigm is understood, there are additional difficulties in using
the CUDA language. Since each warp is executed on a single SIMD
processor, divergent threads in that warp can severely impact
performance. To take advantage of all eight processing elements in
the multiprocessor, a single instruction is used to process data from
each thread. However, if one thread needs to execute different
instructions due to a conditional divergence, all other threads
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texture <float2> tex_posArray;

cudaArray *array = NULL;

void setupTexture(int x, int y) {
tex_posArray.filterMode = cudaFilterModePoint;
tex_posArray.normalized = false;

cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(sizeof(float)*8,
sizeof(float)*8, 0, 0, cudaChannelFormatKindFloat);

cudaMallocArray(&array, &channelDesc, x,y);

Fig. 3. Document positions were stored in texture memory.

must effectively wait until the divergent thread rejoins them.
Thus, divergence forces sequential thread execution, negating a
large benefit provided by SIMD processing. Another limitation in
CUDA is the lack of communication and consequently the lack of
synchronization between blocks. This creates possible problems
of data consistency, typical of parallel modification of singular
values.

Currently, standard (or otherwise) C libraries are not avail-
able/compatible for use on the GPU. NVIDIA does however package
some basic FFT and Linear Algebra libraries with the CUDA toolkit.
In the future, more libraries could be written for CUDA (by users) as
device functions to help streamline the development process. De-
bugging can be difficult in CUDA. A debug mode is available in the
CUDA compiler which forces sequential execution on the CPU by
emulating the GPU architecture. Although this mode is useful for
most general types of debugging, some errors are not exposed. The
emulator cannot detect any concurrency problems as its execution
is sequential. Write and read hazard behavior is undefined during
thread execution on the GPU, therefore the programmer must be
cautious to avoid these errors. Read and write memory hazards oc-
cur when data are being written or accessed in an order which is
not intended or defined. While running a kernel on the GPU, no ac-
cess is provided to the standard output. This effectively turns the
GPU into a black box when it comes to runtime behavior.

The largest constraint for us in our work was the shortage of fast,
local shared memory on GPU. Due to the large size of document
information and our initial method of document comparison we
were forced to make frequent reads from GPU global device
memory [10]. Although the GPU global device memory is much
faster than computer RAM, this global device memory is not cached
and has a delay of hundreds of clock cycles per read associated
with it compare to GPU local memory [11]. We tried to reduce
the impact of this problem by caching some document terms
in shared memory for fast access. After our initial efforts [10]
implementing a GPU document flocking algorithm, we decided to
revise our approach by creating a document similarity matrix and
merely reading that value from device memory for each document
comparison. In this reported experiment, the similarity matrix
is pre-calculated on the CPU. This approach proved to be vastly
superior to our initial approach demonstrating that our instinct to
perform as much calculation inside the kernel was not suitable for

our data. Another problem we encountered in our research was the
requirement of thread divergence in the implementation. Certain
conditional statements could not be avoided. This seemed to have
some effect on the performance, but not a significant one when
compared with the performance degradation of global memory
reads. In an effort to improve the speed of position retrieval
and distance calculation, all document positions were stored in
texture memory. The texture memory is initialed by code shown
in Fig. 3. This design decision did improve the performance of our
implementation on the GPU, but it put a hard limit on the number
of documents that could be compared.

4. Final evaluation and validation of results, total benefits,
limitations

The MSF document clustering algorithm was implemented
in CUDA and was run on the GPU of our test workstation.
For performance comparison purposes, a similar but sequential
implementation was written in C and run on the CPU of the
same machine. The CPU version MSF clustering implementation
only used a single core for computing. We conducted testing on
differently sized sets of documents. Document set sizes ranged
from 200-3600 documents in increments of 200 documents. We
tested each set 30 times and then averaged the runtime of each.
We used randomly generated values for the initial position and
the movement direction of each document for each test to prevent
accidental initial seeding optimization (seeding was based on CPU
clock time). Each test ran the flocking simulation for four-hundred
generations. This means that documents updated their positions
and directions four-hundred times based on other documents
present in their neighborhood. Based on our observations, four-
hundred generations was an adequate number to allow the
documents to converge into stable clusters of similar documents
(Fig. 4).

The flock parameters of each simulation were identical. The
“flying” space of the documents was 300 x 300 square units. This
size space was selected to allow adequate room for each document
to move. Each document had a static neighborhood radius of 30
units and a constant speed of two units per generation. These
parameters were selected based on the flying space size and the
observed behavior of the flocks. Each document had a maximum
limit of a 0.35 radian deviation from its previous moving direction.
The methods for selecting these parameters is described in [3]. We
gave each rule a weight that encouraged system behavior typical
of flocking birds. We assigned a weight of 0.33 to the alignment
rule, 0.66 to the separation rule, and 0.33 to the cohesion rule.
The document feature vector similarity threshold T was 1.20. This
value was selected based on experimental observation. It was small
enough to clearly differentiate groups in the flock while not being
so small that it prevented flocking altogether. As mentioned before,
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Fig. 4. Three thousand documents flocking at 44, 200, and 400 generations.
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a random element was introduced at every generation. Through
observation, we felt that fifteen percent random movement was
high enough to keep the system from stagnating, while low enough
to ensure flocking behavior persisted.

Through our experiments we observed that document flocking
on the GPU has a runtime that is significantly smaller than its
CPU counterpart (see Figs. 5 and 6). From Fig. 5, we can see the
computing time running on GPU and CPU for clustering document
data below 500 documents are not significantly different. For
document numbers ranging from 500 to 3500 documents, the
computing time on the GPU remains below 20 s, which is
acceptable for most human analysts. However, the computing
time on a CPU are exponentially increased to more than 900 s,
which is 15 min. The equal scaling of the Y axle in Fig. 5
makes it difficult to compare the changing trend of computing
time on GPU and CPU for different kinds of data size. In Fig. 6,
we used variable scaling in the running time axle to show the
same experiment results. As shown in Fig. 6, both GPU and CPU
computing time change trends have a similar change pattern
when increasing the clustering document number. It indicates the
time complexity of flocking algorithm does not change after we
implement the flocking algorithm on a high parallel gnu platform.
From GPU speedup chart in Fig. 7, we observed that with 200
documents the GPU implementation is roughly 36 times faster
than the CPU version. Initially, as we increased the number of
documents in our test set, the improvement increased. For 1000
documents, we saw an improvement of nearly sixty times over
the CPU. We hypothesize that the lower performance that occurs
with less than 1000 documents is caused by not all processing
elements on the GPU being utilized. From 1200 to 3400 documents
however, the improvement degrades. As is clear in Fig. 7, after
1000 documents, performance degrades nearly linearly. While we
have done no direct testing, we think this could be due to an
increase in global memory reading requirements as the population
size grows. One thing we need point out is, in this research,
with respect to the performance comparison between GPU and
CPU implementations, the CPU implementation is a single core
version instead of utilizing the multi-core capability of the CPU.
To utilize the multi-core capability, the CPU code needs to be
parallelized and the parallelizing overhead will vary based on how
optimized the parallel CPU codes are. To avoid reader’s suspicions
about our experiment trying to “Compare heavily optimized GPU
code to unoptimized CPU code” [12], we intentionally only use a
single core CPU implementation. We believe, the best scenario for
optimized multi-core CPU code will be no parallelizing overhead
at all. In that case, even for a six-cored CPU, the GPU can still
achieve 5-10 times speedup compare to the CPU. Although this
paper mainly discussed the single GPU data clustering solution,
however, because of the distribution character of the flocking
based algorithm, there will be no difficulty for interested readers
in implementing such a solution on a multi-GPU platform.

5. Future directions

In future work, larger data sets could be investigated. Clustering
hundreds of thousands or even millions of documents on a
workstation quickly is currently an unsolved research problem but
the GPU may provide hope. This paper mainly discussed the single
GPU data clustering solution. Our next step research will mainly
focus on distributing the document flocking algorithm across many
GPUs to substantially improve the number of documents that can
be handled during a simulation, possibly allowing multi-millions
of documents to be clustered quickly. The currently released
NVIDIA Tesla GPU architecture has many times the amount of
device memory as the 8800 GTX we used here. These additional
capabilities can greatly enhance the already high performance
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we saw in our tests. The GPU CUDA we used in this experiment
is still in its early version. The recently released CUDA 4.0 and
Nsight development environment have significantly reduced the
difficulties in programming with CUDA. We believe in the near
future, more applications will adopt the CPU+GPU computing
model to reduce the system computing time. We hope that
through this research we can provide some guidance, insight, and
inspiration to other researchers who deal regularly with complex
data parallel algorithms.
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