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In the Internet of Things, it is important to detect the various relations among objects for mining useful knowledge. Existing
works on relation detection are based on centralized processing, which is not suitable for the Internet of Things owing to the
unavailability of a server, one-point failure, computation bottleneck, and moving of objects. In this paper, we propose a distributed
approach to detect relations among objects. We first build a systemmodel for this problem that supports generic forms of relations
and both physical time and logical time. Based on this, we design the Distributed Relation Detection Approach (DRDA), which
utilizes a distributed spanning tree to detect relations using in-network processing. DRDA can coordinate the distributed tree-
building process of objects and automatically change the depth of the routing tree to a proper value. Optimization among multiple
relation detection tasks is also considered. Extensive simulations were performed and the results show that the proposed approach
outperforms existing approaches in terms of the energy consumption.

1. Introduction

With the progress of wireless communication, mobile com-
puting, and smart sensing and controlling, it is now possible
for objects in our daily life to exchange information and
form a network; this is called the Internet of Things (IOT)
[1]. The concept of IOT is widely used in many fields such
as intelligent transportation, smart home/office, and mobile
medical healthcare [2, 3].

In the IOT, there are numerous kinds of relations among
objects. The examples include that a key resides near a
television and that two objects are used by users consecu-
tively. More complex relations may involve multiple objects
distributed in different physical places. These relations can
be used to search required objects for users or recommend
objects of interest to users [4–6].

In order to detect these relations, we need to gather the
data from relative objects together. Existing works that utilize
relations in the IOT [4–7] assume that a central server exists

and all the data are collected to it for processing. This may
not be feasible since (1) in many scenarios there is no such
central server; (2) if an object is predefined as the central
server, it could suffer from one-point failure, computation
bottleneck, and difficulties when moving away from other
objects; (3) transmitting raw data to a central server for pro-
cessing could incur much energy consumption. Therefore, it
is highly demanded that the system can adaptively determine
a routing structure (usually a tree) along which data is
gathered, relation is detected using in-network processing,
and final result is stored. This processing should be done in a
distributedmanner; that is, no global coordinator exists in the
system. Moreover, if multiple relations need to be detected,
the processing of them should be shared for saving energy.

In this paper, we propose a distributed approach to
gather data needed for a relation and detect the relation. We
first build a system model for this problem following the
custom of distributed computing. Then, we propose a three-
layer solution framework for solving the problem. Based
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on this, an algorithm called Distributed Relation Detection
Approach (DRDA) is presented. The algorithm is to build a
depth autooptimized breadth-first spanning tree and detect
the relation based on it. The optimization among different
relation detection processes is also considered. Extensive sim-
ulations are performed to validate the effectiveness of the pro-
posed approach. The results demonstrate that the proposed
approach is effective and outperforms existing approaches. In
summary, this paper makes the following contributions.

(i) A system model is built for distributed relation
detection in the IOT.

(ii) A distributed approach is proposed to build a routing
tree for detecting relations. Multiple objects may
trigger the routing tree building concurrently but
a single tree is formed. This tree can automatically
optimize its depth to a proper value.The optimization
among different relation detection processes is also
considered.

(iii) Extensive simulations are conducted to validate the
effectiveness of the proposed approach. The eval-
uation results show that the proposed approach is
effective and outperforms the existing approaches in
terms of the energy consumption.

The remainder of this paper is organized as follows:
Section 2 describes the system models used in this paper
and formulates the problem. Then, the Distributed Relation
DetectionApproach is illustrated in Section 3.The simulation
results of validating the proposed approach are reported in
Section 4. Section 5 reviews the related works and finally
Section 6 concludes the paper.

This paper is based on our conference paper [8]. In this
version, we extend the approach to automatically change the
depth of the routing tree based on breadth-first traversal
and optimize the process among multiple relation detection
tasks to further reduce the energy consumption. Additional
discussion regarding relation detection under different time
modalities is also included in this paper.

2. System Model and the Problem

This section describes the system model used in this paper.
We do not assume a central server existing in the system.

In the IOT, there aremultiple objects distributed in differ-
ent physical places. We assume that a subset of the objects
have data related to a specific relation detection. These data
need to be gathered to be analyzed. Usually we build a
routing tree for the IOT to facilitate the gathering.The routing
tree includes all the objects that are directly involved in the
relation, and some other objects that help to forward the
data. All these objects know the definition of the relation and
can trigger the routing tree building. However, a single tree
should be formed eventually. We assume that each relation
is defined in a restricted area and hence the message trans-
mitted in the tree building process is also restricted. After
the routing tree is built, the relation is detected using in-net-
work processing based on the routing tree.There are multiple
relations needed to be detected in the IOT, and hencemultiple

routing trees are needed. In many cases, the routing trees for
different relations can be reused if possible. There are various
metrics tomeasure how effective the routing tree is, including
energy efficiency, latency, overhead, and adaptiveness. In this
paper, we aim to minimize the energy consumption con-
sidering that objects in the IOT usually have limited energy
capability.

The relations among these objects are based on their
attributes such as ID, place, and sensing data. An attribute can
be denoted by its name, its value, and the time interval when
the value holds, in the form of (attributeName, attributeValue,
startTime, endTime). We call such an attribute an interval-
based attribute. An interval-based attribute of an object is
based on two events, each of which describes a change
of the attribute. An event is denoted by (attributeName,
attributeValue, timestamp) where timestamp describes when
the attribute changes into the value of attributeValue. Because
the value of an attribute changes with time, we have a
sequence of events ordered by their timestamps. Except for
the first event, each occurrence of an event completes the time
interval of the old attribute value and starts a time interval
of the new attribute value. For example, when a smart phone
moves, itmay have the events (location, officeA, 8:00AM) and
(location, office B, 8:30 AM).The latter completes the interval-
based attribute (location, office A, 8:00 AM, 8:30 AM), and
generates a new interval-based attribute that starts from 8:30
AM and has not yet completed. An example of the process is
shown in Figure 1.

A relation is a function defined on the attributes of
objects. They are typically described by predicates. A simple
predicate can be directly determined by the attributes of
an object. For example, location𝑖 = 𝐴 is such a predicate
denoting that the location of object 𝑖 is at 𝐴. More complex
predicates can be classified into conjunctive predicates and
relational predicates [9–11]. Conjunctive predicates are in the
formof𝑃1∧𝑃2∧⋅ ⋅ ⋅ , where𝑃𝑖 (𝑖 = 1, 2, . . .) is a simple predicate
of object 𝑖. Relational predicates support arbitrary complex
operations among simple predicates. For example, a relational
predicate can be used to represent the case 𝑃1 + 𝑃2 = 200
using the plus operation. This paper is based on relational
predicates, which means that a wider range of scenarios can
be supported [12].

As a distributed system, IOT can be investigated based
on physical time or logical time. When considering physical
time, we assume that each object has a physical clock and
the clock is well synchronized with those of other objects.
The sequence of event occurrences in the system can be
determined by measuring the timestamps of physical clocks.
For logical time, an object does not have a physical clock,
and the sequence of event occurrences is determined by the
exchange of messages among objects. If there is a message
sent from object 𝑃1 to object 𝑃2, it is certain that the message
sending event of𝑃1 occurs before themessage receiving event
of 𝑃2. Applying the transitive rule, the sequences of more
events can be determined.

For physical time, the most common practice is to infer
the relations under the instantaneously modality [13]. It
denotes that the conditions of a relation are satisfied at a time
point of physical time. This modality is difficult to determine
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Figure 1: Example of relation detection process.

under logical time.Due to the loose restriction of logical time,
corresponding sequences of events may have multiple possi-
bilities in reality [9, 11]. A conservative practice is to employ
definitelymodality [14], which denotes that the conditions of
a relation are satisfied in any of the possibilities. We use the
pairwise overlapping of time intervals to implement the check
under definitelymodality. Given a list of objects involved in a
relation, this modality determines a set of time intervals, one
time interval corresponding to one object, such that the time
intervals are pairwise overlapped and make the relation true.
Two time intervals 𝐼1 and 𝐼2 are said to be overlapped [15] if
they satisfy

𝐼1.startTime < 𝐼2.endTime ∧ 𝐼2.startTime

< 𝐼1.endTime.
(1)

It can be inferred that if such a set of time intervals are found,
in reality there exists a time point that the specified relation is
true. This check also applies to the instantaneously modality
if physical time is used.

Our problem can be described as follows: given the
IOT including multiple objects and a collection of relation
detection tasks, the problem is to build proper routing
trees for these tasks in a distributed manner and determine
the processing in the trees such that the overall energy
consumption for detecting these relations is minimized.

We believe that the problem investigated in this paper
applies to many IOT applications. For example, in a smart
office, smart chairs can sense the activities of people who
sat on them, and their data are collected to infer whether a
meeting starts. Concurrently, multiple RFID readers can be
used to sense the people nearby and infer the distribution
of people in the office. And the working computers can be
monitored to compute the workload of electrical circuits.
These relations can be detected based on the routing trees
built among the smart devices. Subsequently, further actions
can be performed, for example, turning on a projector,
adjusting an air conditioner, and turning off a computer.

Optimization of multiple relation detection tasks

Relation detection along routing trees

Routing tree building for 
individual relations

Routing tree
optimization

Figure 2: Solution framework of distributed relation detection.

3. Proposed Solution

In this section,we propose a solution for detecting relations in
the IOT.We first briefly discuss the basic idea of the approach
and then illustrate the details. Finally, we further discuss the
proposed approach.

3.1. Framework Architecture. We propose a three-layer
framework for solving the distributed relation detection
problem discussed in this paper. As shown in Figure 2, the
framework includes routing tree building for individual rela-
tions (the first layer), relation detection based on routing
trees (the second layer), and optimization ofmultiple relation
detection tasks (the third layer).

In the first layer, we build routing trees among the objects.
The trees are based on individual relations; hence, one routing
tree corresponds to one relation. Multiple objects may start
the routing tree building process concurrently and proper
coordination among these objects ensures a single routing
tree is achieved. The routing trees are optimized in this layer
considering two factors: the relation to be detected and the
topology of the IOT. In the second layer, the events generated
by the objects are forwarded along the routing tree, and
the relation is checked during the forwarding. In the third
layer, the routing trees are further optimized considering
multiple relation detection tasks. Rather than building each
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routing tree independently, it is possible to reuse some parts
of the routing trees and corresponding processing to achieve
minimal overall energy consumption.

3.2. Design Rationale. In existing relation detection ap-
proaches, every object sends its events to a server. The server
generates interval-based attributes, extracts a set of interval-
based attributes whose time intervals are pairwisely over-
lapped, and determines whether they satisfy the conditions
of the relation. In our problem, such a server is not available.
Although a fixed object can be selected as the server to solve
this problem, but this could bring inmore problems including
one-point failure, computation bottleneck, and difficulties
when moving away from other objects. Instead, we build a
routing tree dynamically based on characteristics of objects
on site. The relation can be detected when collecting related
data along the tree by using in-network processing, and the
result is stored in the root of the tree. There are two issues
that needed to be solved in this approach. One is that an
object needs to be selected as the root of the routing tree.The
other is that proper coordination is required when multiple
objects trigger the building of the routing tree in a distributed
manner.

For the first issue, we need to guarantee the uniqueness
and the optimization of the root. The simplest algorithm is
to select a particular object as the root. However, this may
lead to a routing tree with a large depth, along which a lot
of data are required to transmit. We should adapt the root of
the tree during the tree building to keep a proper depth. For
the second issue, when the tree-building processes started by
different objects conflict with each other, a proper method is
required to terminate some of the buildings and allow others
to continue.

When the detection of individual relations is solved,
we consider the scenario where multiple relations need to
be detected. For each relation, a routing tree can be built
using the approach described above.The optimization among
multiple relation detection tasks can be performed by reusing
parts of their routing trees and corresponding processing. An
example can be shown in the Figure 3, relation Φ1 includes
objects 𝑁0, 𝑁1, and 𝑁2; relation Φ2 includes the objects
from 𝑁0 to 𝑁4; hence the routing tree built for Φ1 can be
reused for Φ2. Reuse of a routing tree can save the detection
cost of a relation; however, it may also introduce additional
transmitting data and distance. We will consider this in the
detailed algorithm design.

3.3. Data Structure. Each object keeps several variables for
the execution of our algorithm.The variable events stores the
generated events. 𝑄𝑖 (𝑖 = 1, . . . , 𝑛) is a queue that stores
interval-based attributes gathered from child object 𝑖 (𝑖 =
1, . . . , 𝑛) in the routing tree. parent and children record the
parent object and children objects, respectively. root records
the root of the routing tree. 𝑑𝑒𝑝𝑡ℎ[𝑟𝐼𝐷] denotes the depth of
the current object with regard to relation rID. To facilitate the
process of tree-building, neighbors is used to record all the
objects that an object can communicate with, toSend is used
to record all the objects inneighbors that requires to be visited,
and visited is used to record all the objects in neighbors that
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Figure 3: Routing trees for detecting multiple relations.

have been visited. RS records the IDs of relations in which the
current object has been involved. The notations used in this
paper are summarized in Notations.

3.4. Detailed Algorithms. We propose Distributed Relation
Detection Approach (DRDA) to detect relations in the IOT.
This approach includes three steps.The first step is building a
routing tree for each relation detection task. The second step
is gathering information from the objects and checking the
relations.The third step is optimizing the process formultiple
relation detection tasks. The details are given in Algorithms
1, 2, and 3. Notably, DRDA extends our previous approach
proposed in [8] by using breadth-first traversal strategy
and enabling automatic change of the depth of the routing
tree (in Algorithm 1), supporting more time modalities (in
Algorithm 2), and optimizing the tree building process for
multiple relation detection tasks (in Algorithm 3).

Algorithm 1 is responsible for building a routing tree
for each relation in a distributed manner. This algorithm
is based on the distributed breadth-first traversal approach
[16]. In that work, the system starts from node 𝐴 to traverse
a graph following breadth-first manner and simultaneously
builds a spanning tree rooted at𝐴. Our problem has different
requirements compared with that work. First, the root is not
determined in advance; rather, it is determined in the tree-
building process. Second, the objects involved in a relation
may start routing tree building concurrently, but a single
routing tree should be formed eventually. Compared with
our previous work [8], we change the tree-building strategy
from depth-first to breadth-first, because we observed that
the breadth-first tree has a less depth and more compact
structure comparing with the depth-first tree.

As shown in function buildRoutingTree, each object initi-
ates the tree-building process by regarding itself to be the root
of the tree (i.e., parent=ID) and then sending a tree-building
message “go” to all its neighbors. The ID of the relation to
be detected is added to RS, and toSend is initialized to its
neighbors. Then, the objects respond to different messages
received, as shown in function receiveMsg.There are five types
of messages: “go,” “continue,” “stop,” “no,” and “reverse.”

The processing of “go” messages is depicted in lines 1–24.
First, current object is verified whether it has already received
a “go” message from another initiator regarding the current
relation (line 2), where the received message is recorded in
RS. If it is true, there exist trees initialed by two objects, and
they require to be merged. We merge the tree with a smaller
depth to the tree with a greater depth because later reverse
operations can be minimized. A “reverse” message is sent to



Mobile Information Systems 5

Function: buildRoutingTree(String rID)
(1) parent = 𝐼𝐷, 𝑅𝑆 = 𝑅𝑆 ∪ {𝑟𝐼𝐷}, toSend = neighbors
(2) send Msg(“go”, ID, rID, 0) to each object in toSend

Function: receiveMsg(Msgmsg, Node from)
(1) if msg.type=“go” then
(2) if msg.rID ∈ RS and msg.root ̸= 𝑟𝑜𝑜𝑡 then
(3) if msg.depth + depth[msg.rID] > threshold then
(4) send Msg(“reverse”,ID,msg.rID,0) to parent and from
(5) else if msg.depth > depth[msg.rID] then
(6) send Msg(“reverse”,msg.root,msg.rID,msg.depth+1) to parent
(7) else
(8) send Msg(“reverse”, root,msg.rID, depth[msg.rID]) to from
(9) end
(10) end
(11) if parent=⌀ then
(12) parent = from, root =msg.root, toSend = 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 \ {𝑓𝑟𝑜𝑚}
(13) RS = RS ∪ {msg.rID}, depth[msg.rID]=msg.depth+1,
(14) if (toSend ̸= ⌀) then
(15) send Msg(“continue”, root,msg.rID, ⊥) to from
(16) else
(17) send Msg(“stop”, root,msg.rID, ⊥) to from
(18) end
(19) else if parent=from then
(20) send Msg(“go”, root,msg.rID,msg.depth+1) to each object in toSend
(21) visited=⌀, root =msg.root, depth[msg.rID]=msg.depth+1
(22) else
(23) send Msg(“no”, root,msg.rID, ⊥) to from
(24) end
(25) else if msg.type=“continue”, “stop” or “no” then
(26) V𝑖𝑠𝑖𝑡𝑒𝑑 = V𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝑓𝑟𝑜𝑚}
(27) if msg.type=“continue” or “stop” then
(28) 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 = 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ∪ {𝑓𝑟𝑜𝑚}
(29) end
(30) if msg.type=“stop” or “no” then
(31) toSend = 𝑡𝑜𝑆𝑒𝑛𝑑 \ {𝑓𝑟𝑜𝑚}
(32) end
(33) if toSend=⌀ then
(34) if parent=ID then
(35) trigger the relation detection process
(36) else
(37) send Msg(“stop”, root,msg.rID, ⊥) to parent
(38) end
(39) else if visited=toSend then
(40) if parent=ID then
(41) send Msg(“go”, ID,msg.rID, 0) to each object in toSend
(42) visited=⌀
(43) else
(44) send Msg(“continue”, root,msg.rID, ⊥) to from
(45) end
(46) end
(47) else if msg.type=“reverse” then
(48) send Msg(“revserse”,msg.root,msg.rID,msg.depth+1) to parent
(49) parent = from, root=msg.root, depth[msg.rID] =msg.depth+1
(50) modify children in parent and current node
(51) end

Algorithm 1: Distributed routing tree building algorithm.
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(a) (b) (c)

Figure 4: Automatic depth change in a routing tree (a) object 6 receives “go” message first from object 3 and then object 12; (b) the tree
rooted at object 1 merges into the tree rooted at object 7; (c) object 6 is elected as the root of the result tree and the objects in previous two
trees reverse their attachment.

the tree whose depth is smaller in order to reverse its routing
direction to the current object (lines 5–9).

Following this execution, the depth of routing tree may
be quite large. An example of this can be seen in Figure 4.
As shown in Figure 4(a), there are two routing trees initiated
by object 1 and object 7. After object 6 receives “go” message
from both object 3 and object 12, it requests the tree rooted at
object 1 to merge into the tree rooted at object 7, because the
depth of the latter is 4 and the depth of the former is 2. Object
6 sends a “reverse” message to its parent, object 3, and then
to object 1, to implement the mergence. The merged routing
tree is shown in Figure 4(b). The problem is that the depth
of the final tree is the sum of the previous two trees, which
will further increase when more routing trees merge into it.
A large tree depth causes significant energy consumption and
long latency. To solve this problem, we design an automatic
depth change strategy. The sum of the depths of two routing
trees is compared with a threshold. If it is greater than the
threshold, the current object is elected as the root of the final
tree and “reverse” messages are sent to the two trees (e.g.,
both object 3 and object 12). The result of this process can
be seen in Figure 4(c). Lines 3-4 of function receiveMsg show
the implementation of the automatic depth change strategy.

If the traversal does not conflict with that of other
initiators, the processing is similar to the traditional breadth-
first graph traversal. The algorithm first checks whether the
current object has been visited (line 11). If the object has
not been visited previously (parent = ⌀), the object sets its
parent to the sending object from, records the root object,
and initializes toSend to the objects required to forward tree-
building messages (line 12). The object also updates 𝑅𝑆 to
include the processing relation and updates its depth in the
tree (line 13). Next, it checks whether there are neighboring
objects that have not yet been visited (line 14). If this is true,
the object returns a “continue”message to its parent to denote
that this is a child node and some of its neighbors are required
to be visited (line 15). Otherwise, the object returns a “stop”
message to its parent to denote that this is a child node and
all its neighbors have been visited (line 17). If the object has
been already visited previously, there are two cases to process
the received message. If the message is sent from the parent,
it is a message required to be forwarded to the objects having

not been visited; thus a “go” message is sent to the objects in
toSend (lines 20-21). Otherwise, a “no”message is returned to
the object from (line 23).

The processing of “continue,” “stop,” and “no” messages
is shown in lines 25–46. First, the message is added to visited
(line 26). If the type of themessage is “continue” or “stop,” it is
known that the sending object has not been visited previously
and hence should be added to children (lines 27–29). If the
type of the message is “stop” or “no,” it is known that all
the neighbors of the sending object have been visited or the
sending object is not a child object; then the sending object
can be removed from toSend (lines 30–32). Subsequently, the
object is checked to determine whether all the neighbors have
been visited. If it is not true and all the feedback messages
are received (line 39), a “continue” message is sent back to its
parent (line 44), and eventually the root will initialize another
“go” message to continue the breadth-first traverse (lines 41-
42). If all the neighbors have been visited, a “stop” message
can be sent back to its parent (line 37) and eventually the
root knows that the routing tree is built and then triggers the
processing of relation detection (line 35).

Finally, “reverse” messages are processed in lines 47–51.
The parent is changed to from, the recorded root is updated by
themessage, and the depth of the object in the tree is changed
to msg.depth+1 (line 49). children also requires modification
(line 50) and its trivial operations are omitted here. The
“reverse” message is further sent to its previous parent to
conduct the same operations (line 48).

Algorithm 2 is responsible for relation detection based on
the routing tree. Notably, this algorithmholds in the definitely
modality if logical time is used and the instantaneously
modality if physical time is used. We assume that each object
generates the required time intervals and sends these to the
parent for relation detection. Function sendAttributeInterval
is invoked when a local event occurs (i.e., the value of an
attribute changes). The purpose is to generate time intervals
for further processing. It first checks whether the changed
attribute belongs to the relation (line 1) and then further
checkswhether it is the first time to generate this time interval
(line 2). If this is the case, a time interval is composed that
includes the value of the attribute, the start time, and the end
time.The start time is set to current timestamp 𝑡, and the end
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Function: sendAttributeInterval(String attributeID, Data value, Relation r, Timestamp t)
(1) if attributeID ∈ r.attributes then
(2) if events.get(attributeID) ̸= ⌀ then
(3) Interval interval = events.get(attributeID)
(4) interval.endTime = t
(5) send Info(r.ID, attributeID, interval)
(6) end
(7) Interval interval = (value, t, ⊥)
(8) events.get(attributeID).add(interval)
(9) end

Function: receiveInterval(Interval 𝐼𝑚, NodeID 𝑚, Relation r)
(1) 𝑄𝑚.enqueue(𝐼𝑚)
(2) if 𝑄𝑚.size=1 then
(3) updatedQueue.add(𝑚)
(4) end
(5) while updatedQueues ̸= ⌀ do
(6) foreach 𝑖 ∈ updatedQueues do
(7) if 𝑄𝑖 ̸= ⌀ then
(8) 𝑋 = 𝑄𝑖.ℎ𝑒𝑎𝑑
(9) for 𝑗 = 1 to 𝑛 do
(10) 𝑌 = 𝑄𝑗.ℎ𝑒𝑎𝑑
(11) if 𝑋.𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 ⪰ 𝑌.𝑒𝑛𝑑𝑇𝑖𝑚𝑒 then
(12) newUpdatedQueues.add(j)
(13) end
(14) if 𝑌.𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 ⪰ 𝑋.𝑒𝑛𝑑𝑇𝑖𝑚𝑒 then
(15) newUpdatedQueues.add(i)
(16) end
(17) end
(18) end
(19) endfch
(20) foreach 𝑖 ∈ newUpdatedQueues do
(21) 𝑄𝑖.dequeue();
(22) endfch
(23) updatedQueues = newUpdatedQueues
(24) end
(25) if 𝑄𝑖 (𝑖 = 1, . . . , 𝑛) ̸= ⌀ then
(26) if 𝑟 exists in 𝑄𝑖 (𝑖 = 1, . . . , 𝑛) then
(27) if parent ! = 𝐼𝐷 then
(28) send all 𝑄 (𝑖 = 1, . . . , 𝑛) to parent
(29) else
(30) relation is detected and recorded
(31) end
(32) end
(33) end

Algorithm 2: Relation detection algorithm.

time is set to⊥ denoting that it is not determined (line 7).This
time interval is added to events (line 8). Subsequently, when
another local event occurs, function sendAttributeInterval
is invoked again with the new value. The time interval
previously stored in events is completed by setting its end time

to the timestamp 𝑡 (lines 3-4). Then, the time interval is sent
to its parent in the routing tree (line 5).

The relation detection process is illustrated in function
receiveInterval. This function is based on [15]. It first deter-
mines a collection of pairwise overlapped time intervals, one
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Function: reuseRoutingTree(Relation r, Set rSet)
(1) sharedTree = 0
(2) foreach 𝑖 ∈ rSet do
(3) find the max subtree 𝑠 in i’s routing tree that matched 𝑟
(4) if ‖𝑠‖ > sharedTree then
(5) sharedTree = s
(6) end
(7) endfch
(8) get the node 𝑥 that is the root of sharedTree
(9) find the node 𝑦 in r that connects to sharedTree
(10) calculate the energy consumption 𝐸1 when transmitting the result of sharedTree from 𝑥 to 𝑦
(11) calculate the energy consumption 𝐸2 when using an independent routing tree
(12) if 𝐸1 < 𝐸2 then
(13) reuse sharedTree for r
(14) else
(15) construct an independent routing tree for r
(16) end

Algorithm 3: Routing tree reuse algorithm.

time interval corresponding to one object (lines 1–24). The
details are as follows.When a time interval 𝐼𝑚 is received, it is
placed into the corresponding queue and recorded in updat-
edQueue (lines 1–4). Then, the algorithm attempts to make
all the heads of 𝑄𝑖 (𝑖 = 1, . . . , 𝑛) pairwise overlapped. The
condition for pairwise overlapping is presented in Section 2.
This is checked in lines 11–16. For a pair of time intervals that
do not satisfy the condition, the time interval with the smaller
start time is deleted (placed into newUpdatedQueues) and
replaced by the following time interval. Finally, the pairwise
overlapped time intervals are obtained and checked with
the relation (lines 25-26). If the relation exists based on the
current information, it is further sent to its parent object (line
28) and finally the decision is made at the root of the routing
tree (line 30).

Algorithm 3 is responsible for reusing routing trees
among different relation detection tasks. In this paper, we
aim to minimize the energy consumption by reusing the
routing trees. Suppose that we want to build a routing tree
for relation 𝑟. The variable sharedTree is used to record the
tree that can possibly be shared with previous built routing
trees. In lines 2–7, the algorithm checks each relation and
determines the maximal subtree s that is common between it
and 𝑟. When 𝑠 is determined, its cardinality is compared with
previously determined shared tree sharedTree and the one
with the greater value is retained. In lines 8–16, the algorithm
compares the costs when using and not using the shared
tree. If sharedTree is used, the result in this subtree can be
generated only once, and hence no additional cost is required.
However, it requires additional energy 𝐸1 to transmit the
result from the root of sharedTree to the node linking to
sharedTree in 𝑟. If sharedTree is not used, it requires to build a
new routing tree with the energy consumption of 𝐸2. If 𝐸1 is

less than 𝐸2, we reuse sharedTree; otherwise an independent
routing tree is built.

3.5. Discussion. In this section, we further discuss issues that
require additional considerations in the algorithms.

The first issue regards the detection of multiple relations.
In practice, an object can be involved in multiple relation
detection tasks.These tasksmay require different sensing data
of the object. In order to distinguish these tasks, we should
use different variables (such as parent, children, visited, and
𝑄𝑖) for each task.

The second issue is the detection under logical time.
Compared with physical time, logical time is more complex
owing to uncertainty. We use Figure 5 to illustrate the differ-
ence between physical time and logical time. The sequence
of event 𝑒11 of object 𝑃1 and event 𝑒12 of object 𝑃2 can be
determined by their timestamps directly under physical time.
Conversely, the temporal relations under logical time can
only be determined by message passing. If there is a message
from 𝑒11 to 𝑒22, it is certain that 𝑒11 occurs before 𝑒22. However,
the relation between 𝑒11 of and 𝑒12 cannot be determined. It
means two possibilities exist in reality, 𝑒11 before 𝑒12 or 𝑒12 before
𝑒11. Relation detection under logical time is usually based
on two modalities, possibly or definitely. possibly modality
denotes that a relation holds in one of the possibilities, and
definitely modality denotes that a relation holds in each of
the possibilities. possibly or definitely can be further extended
to occurrence probability [17], which measures the probability
that a relation holds in reality. In this paper, relation detection
is based on the definitely modality. The relation detection
under possibly modality or occurrence probability is left as
future work.
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Figure 5: Temporal relations under logical clock.

The last issue is the moving of objects in the IOT. When
some objects move away, the routing trees including them
need to be revised. There are two kinds of approaches for the
rebuilding of routing trees. One is to detect the moving of
objects and revise the routing tree in real time. The other is
to periodically perform the detection and revision. The data
being transmitted may be lost due to the moving of objects,
and hence some message acknowledgement and retransmis-
sion strategy need to be added to the proposed approach.

4. Performance Evaluation

Simulations were performed to validate the effectiveness of
the proposed approach. We compared the energy consump-
tion of DRDAwith that of the centralized approach proposed
by Raychoudhury et al. in [4] (denoted as the centralized
approach) and the approach proposed in our previous work
[8] (denoted as DRDA-D). Energy consumption is measured
by the number of packages transmitted during the relation
detection.

We conducted the simulations in a region of 40m ×
40mwhere 200 objects were randomly scattered. Two objects
can communicate with each other if a link between them
exists. The links between objects follow the commonly used
Waxmanmodel [18] with an additional constraint of commu-
nication range. Given two objects 𝑢 and V, a link between
them exists according to the probability, 𝑃{(𝑢, V)}:

𝑃 {(𝑢, V)} =
{
{
{

𝛽 × exp −𝑑 (𝑢, V)
𝐿 × 𝛼 (𝑑 (𝑢, V) ≤ 𝑟)

0 (𝑑 (𝑢, V) > 𝑟) ,
(2)

where 𝛽 denotes the density of links, 𝛼 denotes the ratio of
short links to long links, 𝐿 denotes the maximum distance
between two objects, 𝑑(𝑢, V) denotes the distance between
objects 𝑢 and V, and 𝑟 denotes the communication range
of the objects. The values of 𝛼 and 𝛽 are between 0 and 1.
There are several relations (specified by predicates) required
to be detected, and each predicate has the length of 𝑙. In the
simulations, we let 𝛼 = 0.2, 𝛽 = 0.8, 𝑟 = 8, and 𝑙 = 10,
unless otherwise specified. We assume that the routing table
of each object has been established and the amount of data
to be transmitted does not include those used for routing
discovery. We executed each simulation 100 times and then
calculated the average value.

4.1. Impact of the Length of Predicates. The length of a
predicate is correlated to the number of objects required for
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Figure 6: Number of packages for relation detection with different
lengths of predicates.

the relation detection. We varied the length of predicates
from 5 to 19 and check its effect on the number of packages
transmitted in the relation detection. The result is shown in
Figure 6.

It can be observed that the number of packages required
for all the three approaches tends to increase when the length
of predicates increases. This is because an increment of the
length of predicates indicates an increment of the number
of objects related to the predicate. A relation detecting task
must obtain all the related information of all such objects.
Hence, more packages are required to be transmitted. The
number of packages transmitted in the centralized approach
increases approximately linearly with the length of predicates.
The number of packages required for DRDA-D is more than
that required for the centralized approach when the length
of predicates is less than 7 and less than that required for the
centralized approach when the length of predicates is greater
than 7.This illustrates that the in-network processing is more
evident when there are a sufficient number of objects in the
routing tree. DRDA further reduces the number of data trans-
mission compared with DRDA-D and achieves the best per-
formance in all lengths of predicates.This can be explained by
the fact that the breadth-first traversal and the adaptiveness of
the depth of the routing tree result in more compact routing
trees and more in-network processing. When the length of
predicates is 19, the number of packages of DRDA is 31.6%
that of the centralized approach and 59.0% that of DRDA-D.

4.2. Impact of the Density of Links. The communication
network among objects is controlled by three parameters,
the density of links, the ratio of short links to long links,
and the communication range. We first varied the density of
links from 0.3 to 0.9 and compared the performance of the
three approaches in relation detection.The result is shown in
Figure 7.
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Figure 7: Number of packages for relation detection with different
densities of links.

When the density of links increases, the number of pack-
ages transmitted decreases. For the centralized approach, this
is because more links provide more paths from an object to
the root of the routing tree, and hence a shorter path can
be used for data transmission. For DRDA-D and DRDA,
more links not only reduce the hops between objects but also
provide more opportunities for in-network processing. In all
cases, DRDA outperforms the other two approaches in terms
of the number of packages transmitted.DRDA is less sensitive
to the change of the density of links, comparingwith the other
two approaches.

4.3. Impact of the Ratio of Short Links to Long Links. The ratio
of short links to long links is another important parameter
(denoted as 𝛼) influencing the communication network. We
varied 𝛼 from 0.1 to 0.9 and compared the performances of
the three approaches in relation detection.The result is shown
in Figure 8.

When 𝛼 increases, the number of packages transmitted
decreases. This is because the increment of 𝛼 results in
more long links, which reduces the number of transmissions
between two nodes. The reduction is more evident when 𝛼 is
less than 0.3. However, when 𝛼 is larger than 0.3, its impact
on the number of packages transmitted is negligible. This is
because the links are also controlled by the communication
range. Although 𝛼 increases, the length of links cannot be
increased due to such constraint. According to the figure, the
number of packages transmitted of the centralized approach
is muchmore than that of the DRDA-D andDRDA. DRDA is
least sensitive to the change of 𝛼 among the three approaches.

4.4. Impact of the Communication Range. The communica-
tion range of an object is important for the wireless commu-
nications. One of the necessary conditions for two objects to
communicate with each other is that the distance between
them is less than the communication range. We varied the
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Figure 8: Number of packages for relation detection with different
ratios of short links to long links.
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Figure 9: Number of packages for relation detection with different
communication ranges.

communication range from 10m to 50m and compared the
performances of the three approaches in relation detection.
The result is shown in Figure 9.

It can be observed that when the communication range
increases, the number of packages transmitted decreases.
This is nature because less forwarding through intermediate
objects is required.The reduction on the number of packages
is significant when the communication range is between 10m
and 25m and marginal when the communication range is
more than 25m. According to the figure, the number of
packages transmitted of the centralized approach is more
than that of DRDA-D and DRDA. DRDA requires a small
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Figure 10: Number of packages for relation detection with different
distances between objects.

number of packages to be transmitted even though the com-
munication range is small, and the performance is quite stable
in different communication ranges.

4.5. Impact of the Distance between Objects. Multiple objects
are usually involved in the relation detection, and the distance
between objects affects the structure of the routing tree. We
varied the distance between objects from 3m to 15m and
checked its effect on the number of packages transmitted in
relation detection. During this process, we set the length of
predicates to 6. The result is shown in Figure 10.

According to the figure, the number of packages trans-
mitted of the centralized approach is rarely affected by the
distance between objects. This is because the centralized
approach directly connects the objects to the central server,
and the distance between objects is not a concern. The num-
bers of packages transmitted ofDRDA-D andDRDA increase
as the increment of the distance between objects. This can be
explained by the fact that the objects related to the predicate
transmit their data to an intermediate object and the trans-
mission distance increases when the distance between objects
increases. DRDA-D outperforms the centralized approach
when the distance between objects is less than 9 m and
underperforms the centralized approach when it is greater
than 9 m. DRDA demonstrates superior performance in all
cases compared with the centralized approach and DRDA-D.

4.6. Impact of the Number of Objects. We compared the per-
formances of the three approaches in a networkwith different
sizes. By varying the number of objects in the network from
50 to 450, we checked the number of packages transmitted for
relation detection. The result is shown in Figure 11.

As the number of objects increases, the number of pack-
ages transmitted of the centralized approach gradually de-
creases from approximately 70 to 56 and maintains this
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Figure 11: Number of packages for relation detection with different
sizes of networks.

level. This is because if there are only a small number of
objects, the shortest paths are difficult to obtain, whereas if
the number of objects is sufficiently large, the added objects
do not affect the shortest paths. By contrast, as the number
of objects increases, the number of packages transmitted of
DRDA-D gradually increases from approximately 27 to 49
and maintains this level. This is because DRDA-D performs
depth-first traversal and hence a routing tree with a large
depth is built when the number of objects is limited. DRDA
has the best performance, approximately 22 in different sizes
of networks. It verifies that the breadth-first traversal used in
DRDA is effective in constructing a compact routing tree.

4.7. Impact of the Reuse of Routing Trees. We further verify
the effectiveness of the reuse of routing trees. According to
the design of DRDA, when there are multiple predicates (i.e.,
relations) required to be detected, some parts of their routing
trees can be shared.We consider a scenario of multiple predi-
cates each of which involves ten objects. Nine of them are
at the lower-left region, and the other one is at the upper-
right region. Five of the objects are commonly required for
all the predicates. We vary the number of predicates to check
the performance of DRDA reusing routing trees and DRDA
building the trees independently. The result is shown in
Figure 12.

It can be observed that DRDA reusing routing trees
requires fewer packages to be transmitted. This is because
the transmission in the reused routing tree can be saved. The
number of packages saved increases as the number of predi-
cates increases. When there are 19 predicates, approximately
32.7% of packages can be saved, compared with building the
routing trees independently.

4.8. Execution Time of DRDA. Although the major concern
of this paper is the energy consumption, we keep the
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Figure 12: Number of packages for relation detection with different
number of relations.
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Figure 13: Number of hops for relation detection with different
communication ranges.

execution time as short as possible. We varied the communi-
cation range, the length of predicates, and the density of links
and checked the execution time of the three approaches in
relation detection. The other parameters have similar effects
on the execution time and hence their results are omitted.The
execution time ismeasured by themaximumnumber of hops
required for an object to transmit its data to the root of the
routing tree. The results are shown in Figures 13–15.

It can be observed that DRDA and the centralized
approach have similar execution time in different settings of
parameters. DRDA demonstrates less execution time when
the communicating range is less than 20m, the length of
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Figure 14: Number of hops for relation detection with different
lengths of predicates.
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Figure 15: Number of hops for relation detection with different
densities of links.

predicates is less than 7, and the density of links is greater
than 0.3. In all settings, the execution time of DRDA is less
than that of DRDA-D.

5. Related Works

In the literature, there are some works related to relation
detection in the IOT. In wireless sensor networks and per-
vasive computing, extracting the relations among objects is
important. In [19], Khelil et al. collect the data (e.g., temper-
ature) from sensor nodes and compose a spatial and tem-
poral map based on the data for further analysis. Similarly,
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SENSID [20] is a middleware for wireless sensor networks
to detect spatial and temporal event patterns specified by the
user. In pervasive computing, Huang et al. check inconsistent
context information based on concurrent event detection [7].
It assumes asynchronous communications, and the solution
is based on vector clock and time interval analysis. Appli-
cations such as Snoogle [21], Microsearch [22], and FiMS
[23] are designed to search physical objects based on their
relations. Raychoudhury et al. further build a context map
based on the relations in the IOT for navigation among
objects [4]. Mietz et al. extend the search of physical objects
by providing semantic Web-based [24] data storage format
and the query language. Perera et al. [25] propose a model for
sensor search based on users priorities and characteristics of
sensors (e.g., reliability, accuracy, and battery life). Chen et al.
consider the users’ dynamic and changing context for object
search [5]. Yao et al. [6] recommend things to users based on
relations across heterogeneous entities of IOT including user-
thing relations, user-user relations, and thing-thing relations.
All these works assume that a central server exists and all data
are collected in it for processing. This is not suitable for the
IOT that includes a large number of distributed objects and
supports the relation detection requirements thatmay change
frequently.

There are also works for the detection of different kinds
of predicates. Predicates are used to specify the relations
of interest, based on the attributes of objects. Zhu et al.
compose a research framework for predicate detection [17]. In
that framework, predicate detection is categorized according
to three metrics: predicate type, detection cardinality, and
detection modality. Predicate type refers to the forms of
predicates, including simple conjunctive, simple relational,
simple sequence, and interval-constraint sequence. Simple
conjunctive denotes a conjunctive expression of states of
processes, and simple relational can specify arbitrary oper-
ations between states of processes [9, 11]. Simple sequence
and interval-constraint sequence further specify the temporal
sequence of states [26]. More detailed classifications may
also consider the stability of predicates. A stable predicate
is a predicate that remains true once it is true; an unstable
predicate is a predicate that is true intermittently [27].
Detection cardinality includes single detection and repeated
detection [28]. Detection modality includes physical time
and logical time, denoting that a predicate is satisfied in
terms of physical time and logical time, respectively. There
are different detection approaches for different types of
predicates. For the detection of simple relational and stable
predicates based on physical time, we can get the snapshot
of system [27] and analyze the results. For the detection of
unstable predicates based on logical time, we need to consider
multiple possible observations existing in the system [12].
Definitely and possibly modalities are introduced for such
a detection [14]. Zhu et al. extend these to a more generic
occurrence probability that canmeasure the probability that a
predicate holds in different observations [17]. Kshemkalyani
et al. specify the fine-grained relations of time intervals under
logical time [13, 29]. The works above are useful for our
research, especially for specifying relations. However, they
cannot be directly used for solving our problem. In this paper,

we utilize the ideas of unstable and simple relational predicate
detection and adapt them to the relation detection in the IOT.

6. Conclusion

In this paper, we studied the relation detection problem
in the IOT. Existing works on relation detection mainly
focus on centralized processing, which suffers from problems
including unavailability of a server, one-point failure, compu-
tation bottleneck, and moving away of objects. Realizing the
drawbacks of the prior works, we proposed DRDA to achieve
distributed relation detection in the IOT. DRDA supports
generic forms of relations and both physical time and logical
time modalities. For each task, a spanning tree is built in a
distributed manner. Proper coordination among objects and
automatic depth change of the tree are implemented. The
optimization among multiple relation detection tasks is also
considered. We performed extensive simulations to validate
the effectiveness of the proposed approach. The results show
that the proposed approach can reduce the amount of data to
be transmitted.

Notations

ID: ID of an object
rID: ID of a relation
RS: Relation IDs in which the

current object has been involved
depth[rID]: Depth of the current object in

the routing tree regarding
relation rID

parent: ID of the parent of the current
object in the routing tree

children: IDs of the children of the
current object in the routing tree

root: ID of the root of the routing tree
neighbors: IDs of the neighboring objects
toSend: IDs of the objects to be visited in

the process of the routing tree
building

visited: IDs of the objects already
considered in the process of the
routing tree building

Msg(Type, rootID,
relationID, depth):

Message used in the routing tree
building, containing message
type, ID of the initiator, ID of
relation, and depth from the
initiator

𝑟, 𝑟.𝑖𝑑, 𝑟.𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠: Relation, its ID, and its attributes
interval(AttributeValue,
StartTime, EndTime):

Time interval with attribute
value, start time, and end time

events: Events record for different
attributes

Info(RelationID,
AttributeID, Interval):

Message used in relation
detection, including ID of
relation, ID of attribute, and
time interval

𝑄𝑖 (𝑖 = 1, . . . , 𝑛): Queue storing time intervals
from child object 𝑖
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𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑄𝑢𝑒𝑢𝑒,
𝑛𝑒𝑤𝑈𝑝𝑑𝑎𝑡𝑒𝑑𝑄𝑢𝑒𝑢𝑒:

Queues storing time intervals in
relation detection.
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