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ABSTRACT 
Adaptive systems are critical for future space and other unmanned 
and intelligent systems.  Verification of these systems is also 
critical for their use in systems with potential harm to human life 
or with large financial investments.  Due to their nondeterministic 
nature and extremely large state space, current methods for 
verification of software systems are not adequate to provide a high 
level of assurance.  The combination of stabilization science, high 
performance computing simulations, compositional verification 
and traditional verification techniques, plus operational monitors, 
provides a complete approach to verification and deployment of 
adaptive systems that has not been used before.  This paper gives 
an overview of this approach. 

Categories and Subject Descriptors 
D.2.4 [Software/Program Verification]: Formal methods 

General Terms 
Verification, Theory, Design 

Keywords 
Verification, adaptive systems, high performance computing 
simulation, compositional verification 

 

1. INTRODUCTION 
To solve future complex mission needs in space exploration and 
aeronautics science, NASA roadmaps [1] and Space Technology 
Grand Challenges [2] have identified the need for adaptive 
systems—systems that autonomously adjust their behavior during 
operation due to unanticipated events, changes in environment, 
etc.  Verifying such systems before they are deployed is essential 
because there are limited to no opportunities to effectively 
monitor and adjust their behavior during operation.  Current 
verification methods do not scale to support the astronomical state 

space of such systems.  Aggressive state space reduction is 
required for modern automated verification techniques to work.  
Unfortunately, this leads to low-precision models that no longer 
adequately represent the original system. 

We are developing Adaptive Verification (AdaptiV), a tool chain 
and methodology (Figure 1) for verifying adaptive systems that 
alleviates the above challenges.  AdaptiV consists of:  

(1) a stability analysis capability that identifies instabilities given 
a system model and partitions the system model into stable 
and unstable component models;  

(2) a state space reduction capability that prunes the state space 
of an unstable component model without loss of critical 
fidelity;  

(3) high performance computing (HPC) simulations to explore 
component behavior over a wide range of an unstable 
component’s reduced state space and produce a statistical 
verification for the component;  

(4) a compositional verification capability that integrates 
individual component verifications; and  

(5) operational monitors to detect and take action to correct 
undesired unstable behavior of the system during operation. 

 

2. BACKGROUND 
Contemporary software systems have massive state spaces.  This 
is particularly true for adaptive systems, where components of 
such systems operate concurrently, interact with each other and 
the environment, and react in response to changes in the 
environment.  The huge state spaces are the result of the 
combinatorial explosion caused by non-deterministic interaction 
(interleaving) of component operations and the environment.  
Typical modern automated verification techniques, such as 
automated theorem proving and model checking, do not scale to 
support such large state spaces.  For these techniques to be 
effective, the state space of the targeted systems must be 
substantially reduced.  State space reduction is achieved by 
aggregating state transitions into an abstract (coarser-grained) 
finite state model of the system. The technique effectively reduces 
the total number of states to be considered, but also reduces the 
fidelity of the system model.  The key is that the abstract model 
must remain precise enough to adequately represent the original 
system in dimensions of interest.  Thus, a tradeoff exists between 
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Figure 1. Process for verification of adaptive systems 
 

the size and precision of the models.  Today, only very abstract, 
low fidelity models can be automatically verified.  What’s needed 
for adaptive systems are techniques to support automated 
verification of a much larger state space. 

Stabilization science has been used to verify the stability of a 
trained neural network, which is one form of an adaptive system 
[3-7].  AdaptiV is building on this body of work to verify a 
broader range of adaptive systems.  It is using stability analysis to 
identify the unstable parts of an adaptive system.  These parts will 
be further analyzed using HPC simulation over a large number of 
runs to compute a confidence level in their ability to converge 
around a stable operating point or region.  While adaptive systems 
may be inherently unstable because of operational needs – e.g., 
the need to adapt in real time – this is not necessarily a reason for 
failing verification.  An unstable system may still converge, even 
though complete verification may not be possible. 

The above results will then be combined to yield a probabilistic 
measure of confidence in component behavior and provide state 
space convergence parameters that identify potential symptoms of 
unstable behavior.  Where comprehensive verification is not 
possible, operational monitors can be deployed with the adaptive 
system.  Monitors will be able to be automatically generated and 
deployed to detect non-convergence symptoms during operation 
and guide the adaptation towards stable behavior. 

 

3. MODEL CHECKING 
A promising, and lately popular, technique for software 
verification is model checking [10]. This approach advocates 
formal verification tools whereby software programs are 
automatically checked for specific design flaws by considering 
correctness properties expressed in temporal logic. In general, 
model checking provides an automated method for verifying finite 
state systems by relying on efficient graph-search algorithms. The 
latter help to determine whether or not system behavior described 
with temporal correctness properties holds for the system’s state 
graph.  

A general model-checking problem is: given a software system A 
and its formal specification a, determine in the system’s state 
graph g whether or not the behavior of A, expressed with the 
correctness properties p, meets the specification a. Formally, this 
can be presented as a triple (a; p; g). Note that g is the state graph 
constructed from the formal specification in a labeled transition 
system (LTS) [6] format. Formally, an LTS can be presented as a 
Kripke Structure [6], which is a tuple (S; S0; Act; R; AP; L) 
where: S is the set of all possible system states; S0 ⊆  S is a set of 

initial states; Act is the set of actions; R ⊆  S ×  Act ×  S are the 
possible state transitions; AP  is a set of special atomic 
propositions; L : S→2AP is a labeling function relating a set L(s) 
ϵ 2AP of atomic propositions to any state s, i.e., a set of atomic 
propositions true in that state. Note that in order to make an LTS 
appropriate for model checking, each state s must be associated 
with a set of atomic propositions AP true in that state. 

The biggest issue model checking is facing today is the so-called 
state explosion problem [10]. In general, the size of a state graph 
is at least exponential in the number of tiers running as concurrent 
processes, because the state space of the entire system is built as 
the Cartesian product of the local state of the concurrent 
processes. To overcome this problem, modern model checking 
tools strive to reduce the state space of the targeted software 
systems.  

Note that a straightforward model of a contemporary concurrent 
software system has a large and complicated state space and 
reduction is an important technique for reducing the size of that 
state space by aggregating state transitions into coarser-grained 
state transitions. State-space reduction is achieved by constructing 
an abstract (coarser-grained) finite state model of the system, 
which eventually is still powerful enough to verify properties of 
interest. The technique effectively reduces the total amount of 
states to be considered but is likely to reduce the granularity of the 
system to a point where it no longer adequately represents that 
system. The problem is that although the abstract model is 
relatively small it should be also precise to adequately represent 
the original system. The latter requirement tends to make the 
abstract models large, because the size of a transition system is 
exponential in the number of variables, concurrent components 
and communication channels. However, large models make 
automated verification extremely inefficient, thus introducing 
tradeoffs between the size and precision of the models which 
considerably reduces their effectiveness. 

Figure 2 depicts a generic view of the model-checking verification 
method. Note that in the case that a correctness property is not 
satisfied, the method returns a counterexample. The latter is an 
execution path of the LTS for which the desired correctness 
property is not true. If model checking has been performed on the 
entire LTS, then the property does not hold for the original AS 
specification. Otherwise, in the case that a reduced LTS has been 
used (state-explosion techniques have been applied), the 
information provided by the counterexample is then used to refine 
the reduced model.  Numerous formal tools allowing verification 
by model-checking have been developed, such as Spin, Emc, Tav, 
Mec, XTL, etc.  Despite best efforts and the fact that model 
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Figure 2. The Model-Checking Approach 
 

checking has proved to be a revolutionary advance in addressing 
the correctness of critical systems, software assurance for large 
and highly-complex software is still a tedious task.  The reason is 
that high complexity is a source of software failures, and standard 
model checking approaches do not scale to handle large systems 
very well due to the state-explosion problem. 

Model checking is the most prominent automatic verification 
mechanism today. However it requires finite state models in order 
to perform automatic verification of all the possible execution 
paths of a system. However, the adaptive systems (or individual 
adaptive components) are intrinsically non-deterministic, which 
means that they may have a huge state space. As a result, abstract 
models needed by model checking are difficult to set up and to 
use. Hence, validation by using model checking is possible neither 
for the whole system nor for the individual adaptive components. 
In such a case, to perform limited model checking on some of the 
components, we need to determine the non-adaptive and adaptive 
(unstable) parts of an adaptive system. 

 

4. STABILIZATION SCIENCE 
Stabilization science [8] provides a common approach to studying 
system stability, where a system is linearized around its operating 
point to determine a small-signal linearized model of that 
operating point. The stability of the system is then determined 
using linear system stability analysis methods such as Routh-
Hurwitz, Root Locus, Bode Plot, and Nyquist Criterion.  AdaptiV 
will use stabilization science on a model of an adaptive system to 
partition it into a collection of stable (deterministic) and unstable 
(non-deterministic) components, apply traditional techniques to 
verify the stable components, apply high performance computing 
simulation to explore the state space of unstable components, 
compute a verification confidence for each component, and use 
compositional verification techniques to produce an overall 
verification and verification confidence for the whole system. 

Identifying the unstable parts of an adaptive system is key to our 
verification approach.  The unstable parts introduce uncertainty in 
system behavior where, in contrast, a stable system transits from 
one safe state to another safe state.  Currently, there is no efficient 
way to determine the overall stability of a complex concurrent 
system, such as spacecraft software.  Due to the state space 
explosion problem, a system-level stability check may suggest 
divergent behavior since over an infinite state space there may be 
an infinite sequence of successively weaker assertions, none of 
which is stable.  To address this problem, we are using 
stabilization science to model an adaptive system to identify and 

partition the model into a collection of stable and unstable 
components.  We are using the results of the stability analysis to 
create small-signal linearized models for all the system 
components. We anticipate that the linearized models of system 
components will yield a relatively small state space, enabling their 
effective analysis.  Automatic stability analysis of the components 
might be best performed via time domain simulation using small-
signal models. It should be noted that the lack of unstable 
components does not automatically guarantee system stability and 
compositional verification will need to be performed to ensure the 
desired system behavior. 

Partitioning the system into components, verifying each 
component, then using compositional techniques to provide an 
overall verification for the system is not new.  What is unique is 
the application of stabilization science to partition the system into 
stable and unstable components.  Stable components represent 
deterministic or non-adaptive behavior and can be verified using 
traditional techniques.  Unstable components–those representing 
non-deterministic or adaptive behavior – require state space 
exploration beyond that which can be achieved using traditional 
techniques. 
 

5. STATE SPACE REDUCTION 
Stable components identified during the stability analysis 
represent deterministic or non-adaptive behavior.  These 
components will be verified using traditional techniques.  
Unstable components may require state space exploration beyond 
that which can be achieved using traditional techniques.  For these 
components, we are:  

1. Pruning the state space by identifying isomorphic elements in 
the state space. 

2. Examine patterns in the state space (using clustering, 
categorization, or other pattern identification approaches) to 
further reduce the state space.   

As needed, we will examine other ways to reduce the state space 
in ways that provide sufficient confidence that model behavior 
appropriately represents actual system behavior. 
 

6. HIGH PERFORMANCE COMPUTING 
Stability analysis methods perform exhaustive exploration of all 
possible behaviors. Partitioning the system into stable and 
unstable components will reduce the size of the state space 
requiring exploration and will help to speed up the exploration of 
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the remaining state space.  In spite of this, we anticipate that it 
will still be impossible to explore the entire state space of a large 
adaptive system with limited memory resources and limited time. 

To reduce memory, we will take a lightweight snapshot of an 
unstable component’s state – consisting of a state’s signature (a 
hash compaction of an actual state) and the trace (the sequence of 
return values from its path decision function). To restore the 
component’s state, AdaptiV will replay the sequence of choices 
from the initial state.  However, reconstructing states is a slow and 
CPU-intensive process, especially when traces are deeper. 

To reduce runtime, we will use HPC to determine if and how the 
unstable components found during stability analysis will converge 
during adaptation.  Parallelizing simulations will allow multiple 
state space explorations to occur simultaneously.  We plan to 
investigate the use of HPC to achieve exhaustive exploration on 
the unstable components. All HPC “nodes” (or processing 
elements) will reconstruct and clone the states from their traces 
concurrently and explore them on different nodes. Checkpoints of 
actual component states on one node can be efficiently distributed 
to other nodes, through live operating system processes that use 
thin virtualization techniques. In addition, such techniques 
facilitate the use of distributed hash tables, treating the lightweight 
snapshot of the states as network objects to achieve fair load 
balancing and reduce the network communication for status 
exchange between the divided components. 

As we indicated previously, even with the help of HPC, we do not 
anticipate that any computational model will ever be fully 
verified, given limited memory and time resources.  To overcome 
this limitation, AdaptiV will provide a percentage of confidence 
level or confidence measure.  The basic confidence measure will 
be calculated by following equation: 

Cm = x*(2*0.5y) 

where Cm is the confidence level measure, x is the total number of 
inputs and y is number of optimal samples. How to optimize the 
sample results to maximize coverage of the state space is an open 
research question that will be explored on this project.  Even so, 
AdaptiV can increase the statistical confidence level beyond that 
of traditional model checking tools. 

 

7. COMPOSITIONAL VERIFICATION 
Adaptation significantly complicates system design because 
adaptation of one component may affect the quality of its 
provided services, which may in turn cause adaptations in other 
components. The mutual interaction among system components 
affects overall system behavior. Hence, it is not sufficient to 
verify each component separately to ensure system correctness. 
What’s needed is an ability to check the adaptation process as a 
whole.  This is a complex and error-prone task. In our approach, 
we will apply compositional verification9 techniques, combining 
results obtained from the verification of individual components, to 
produce an overall system-wide verification.  We will consider 
combinations that characterize important invariants, classified 
into: mission goal invariants, behavior invariants, interaction 
invariants and resource invariants. Here, behavior invariants are 
over-approximations of components’ reachability of safe states, 
and interaction invariants are global constraints on the states of 
components involved in interactions. Selecting the most 
appropriate set of invariants and determining heuristics for 
computing invariants (e.g., interaction invariants) are major 
difficulties in designing a compositional verification technique for 

adaptive systems. We explore this selection process as part of the 
ongoing research.  While compositional verification alone cannot 
guarantee complete correctness of an adaptive system, it can 
prove such things as deadlock-freedom and overall mission-goal 
reachability. 
 

8. OPERATIONAL MONITORS 
Because an adaptive system cannot be completely verified, 
operational monitors should be deployed with the end system.  
These monitors will be based on the results of the stability 
analysis and the HPC simulations.  The monitors can provide 
alerts that the system is not converging, restart components or 
force the system into a known state if any adaptations do not 
converge within a specified time interval. 
Instead of one large monitor, we anticipate that it will be more 
advantageous to have multiple monitors—one or more for each 
adaptive component.  To reduce overhead processing, the 
monitors would only operate when an adaptive component is 
executing; otherwise, they would remain dormant.  The monitors 
would be configured with information from the HPC simulations 
regarding convergence times for an adaptive component during 
adaptation.  In addition, end states (variable values, etc.) that 
indicate that adaptation has completed would also be used by the 
monitors. 
 

9. SYSTEM INPUTS 
AdaptiV will take as input a model of the adaptive system, 
derived from either system requirements or its design.  The type 
and structure of the model used will depend on the type of 
stability analysis used (to be determined as part of ongoing 
research).  The parts of the adaptive system that are determined to 
be stable could be verified using the same techniques as the non-
adaptive components of the system.  This research project 
concentrates on the unstable parts of the system. 

 

10. CONCLUSION 
From the NASA roadmaps [1] and Space Technology Grand 
Challenges [2], it is clear that the use of adaptive systems will be 
important for future space systems and missions as well as other 
life critical systems.  Due to their large state space, non-
determinism, and the changing nature of these systems, traditional 
verification techniques are not adequate.  The combination of 
stabilization science, HPC simulations, compositional verification 
and traditional verification techniques, plus operational monitors, 
provides a complete approach to verification and deployment of 
adaptive systems that has not been used before. 
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