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Abstract 
 

In this paper, we describe a swarm-based fuzzy 
logic control (FLC) mobile sensor network approach 
for collaboratively locating the hazardous 
contaminants in an unknown large-scale area. The 
mobile sensor network is composed of a collection of 
distributed nodes (robots), each of which has limited 
sensing, intelligence and communication capabilities. 
An ad-hoc wireless network is established among all 
nodes, and each node considers other nodes as 
extended sensors. By gathering other nodes’ locations 
and measurement data, each node’s FLC can 
independently determine its next optimal deployment 
location. Simultaneously, by applying the three 
properties of the swarm behavior: separation, 
cohesion and alignment, the approach can ensure the 
sensor network attains wide regional coverage and 
dynamically stable connectivity. The simulation 
presented in this paper shows the swarm-based FLC 
mobile sensor network can achieve better 
performance and have higher fault tolerance in the 
event of partial node failures and sensor measurement 
errors. 
 
 
1. Introduction 
 

When the contents of a hazardous material 
container are accidentally or intentionally released 
into an open area, the material will mix with the air to 
become an aerosol or vapor. The contaminant can be 
dispersed into the surrounding area with the flow of 
air [8,9]. The traditional approach of using an animal 
such as a dog for detecting, tracking and seeking odor 
sources cannot be used for locating highly fatal 
aerosols. Continued sampling and careful search of the 
entire suspected area by a professional human with 
adequate personal protective equipment could finally 
locate all of the aerosol emission sources, but such an 

approach is not efficient in terms of time 
requirements, not to mention the risk to the human 
operators.  

In recent years, the threat of biological and 
chemical weapons technologies is increasing. Quick 
location and containment of hazardous vapor/aerosol 
emission sources to reduce casualties are essentially 
important. With today’s advanced technology, 
different kinds of mobile systems equipped with 
electrical vapor/aerosol-sensors have been investigated 
to locate hazardous material emission sources in a 
suspected area [8,10,12,14,17]. The electronic 
vapor/aerosol sensors used on this model mobile 
system could only provide gas concentration 
information about a very small area [10]. Further, the 
sensors usually cannot provide an instantaneous and 
precise measurement of the vapor/aerosol 
concentration because of the sensor’s long response 
time and even longer recovery time. However, the 
natural diffusion phenomena of gases and aerosols 
tend to spread in the environment inducing a 
concentration gradient that can be used as a clue for 
tracing emission sources [15]. This gradient 
phenomenon is very easily be impacted by airflow and 
geographical features of the environment [8,10]. 
Currently, most research focuses on investigation 
techniques for locating the sources by using a single 
robot [10,13]. Because of the spatial limitations of a 
single robot, few robotic systems have been developed 
that demonstrate the ability to carry out the source 
localization task in a large-scale area with 
unstructured environment.  

The increasing interest in distributed multiple 
robotic systems [1,2,20] indicates that employing 
multiple inexpensive, simple mobile robots (as 
opposed to a single expensive, complex mobile robot) 
could perform exploration tasks in a large-scale area 
more efficiently. In this paper, we provide a swarm-
based fuzzy logic control (FLC) algorithm that 
integrates groups of low-cost robots, which are 
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equipped with limited-range communication ability 
and relatively inexpensive aerosol sensors. Each robot 
acts as a node in the mobile sensor network. The 
control algorithm is implemented on each individual 
node, and each node decides its action. Each node’s 
action is regulated by swarm behavior [11], a 
computational metaphor inspired by social insects. 
This paradigm, which has been demonstrated by 
flocks of birds, is an ideal model for solving problems 
in a distributed manner. Three basic control behavior 
properties of swarm behavior (separation, cohesion 
and alignment) [15] are used to ensure that the sensor 
network attains large region coverage and maintains 
dynamic ad hoc network connectivity between nodes. 
By using this ad hoc connectivity, all of the 
information obtained by any node can be utilized by 
the others.  

In this mobile sensor network, each node will 
consider other nodes with which it can communicate 
as its mobile extended sensors. By gathering the data 
from other nodes, a node can detect the remote 
environment‘s aerosol concentration that it cannot 
directly detect and use the location of the sensors to 
generate control commands to guide the robots in the 
likely direction of the aerosol gradient. However, 
characteristics of the vapor/aerosol in the environment 
reduce the precision of each node’s sensor. At the 
same time, some environmental effects, such as: lack 
of GPS signal, loss of line-of-sight between nodes and 
odometer error, may hinder a robot’s self-localization 
ability. The problem is further complicated by the 
possibility of a sensor or node failure at any time. All 
these factors render the information from one node, 
and by extension, the entire network, incomplete, 
uncertain, and approximate. The FLC algorithm in 
this paper allows for uncertain inputs, and generates 
finite commands to control node moves to their 
optimal deployment location. Because of the 
possibility that a node may be unable to gather 
information from all other nodes, the FLC allows 
dynamically varying inputs. Consequently, the fuzzy 
control rules are generated dynamically based on how 
many inputs are available to the FLC.   

The next section gives a brief overview of the 
emission source localization by robots. Section 3 
sketches the architecture of the swarm-based FLC 
algorithm and describes the way that swarm behavior 
controller is implemented. The last two sections 
present a simulation experiment that evaluates the 
swarm-based FLC algorithm along with the results 
and conclusion. 

 
2. Related work 
 

Most early research about hazardous aerosol 
detection was based on the cold-war scenario. 
Scientists were interested in discovering methods of 
protection from bio/chemical weapons attack in the 
battlefield setting. That includes soldier personal 
protective equipment, anti-biochemical and anti-
nuclear vehicles and hazardous materials detection in 
a battlefield. In recent years, with the increasing 
accidental release of hazardous gases and the 
increased risk of bio/chemical terrorism, researchers 
have begun developing methods for preventing the 
diffusion of hazardous gases or aerosols into an urban 
or otherwise sensitive geographical area. This research 
moves in two directions. One research concept focuses 
on establishing the accurate boundary or perimeter of 
a dynamically changing hazardous material 
contaminated area for preventing human exposure or 
enabling evacuation from the dangerous area. Hardin 
et al. [9] presented a modified particle swarm 
algorithm for robotic mapping of an area 
contaminated by hazardous materials. Flanigan [6] 
proposed using passive infrared to remotely detect 
hazardous vapors. 

 Another related area is odor source localization. 
This research focuses on the use of robots to efficiently 
detect, track and seek the odor source. Previous 
approaches using multiple robots for detecting gas or 
aerosol sources include spiral surge [8], gradient-seek 
[10] and bias random walk [12]. The gradient seek 
approach is the most commonly used approach in odor 
localization. The bias random walk approach can be 
considered as a variation of the gradient-seek 
technique. This set of techniques uses the natural 
phenomena of diffusion as a clue for tracing emission 
sources. A robot’s movement is dependent upon the 
temporal and spatial changes in aerosol concentration 
as sensed by the robot. An increase in the 
concentration along the robot’s path is called a 
positive gradient while a decrease is called a negative 
gradient. The robot will always try to move in a 
direction that will generate a positive gradient. 
However, an individual robot using this approach is 
easily susceptible to local maxima and plateaus of the 
aerosol concentration.  

The spiral surge approach breaks down the whole 
search task into three sub tasks: plume finding, plume 
traversal and source declaration [8]. In the plume 
finding stage, the robot will perform an initial outward 
spiral search pattern to allow the robot to contact the 
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odor. When a robot encounters an odor, the robot will 
sample the wind direction and move upwind searching 
for the odor source. The utilization of wind direction 
as the main control parameter of the robot’s direction 
restricts this approach to an environment where the 
geographical status is relatively simple and the wind 
direction is stable. The lack of collaboration in this 
approach restricts each robot to only local information 
about the environment, and the team can easily be 
trapped in local odor maxima and plateaus. This 
approach cannot prevent the robot from repeatedly 
searching the same area while other areas are left 
uninvestigated. 

The primary drawbacks of previous 
approaches are due to lack of collaboration 
between robot team members. Each robot can only 
make decisions based on the local information it 
sensed from surrounding environment. A 
complex, dynamic environment makes those 
approaches impossible to get an optimal or near 
optimal decision based on limited local 
information. A new control algorithm that makes 
all robots fully collaborative for decision making 
based on information exchange and fusion needs 
to be developed.  

 
3. The swarm-based FLC algorithm 
description 
 
3.1. Assumptions 
 

In the swarm-based FLC algorithm, we envision 
that a hazardous gas container is vented to the 
atmosphere in a large-scale area. A swarm of robots is 
deployed into this suspected area to act as a mobile 
sensor network to search for the source. Each robot is 
a node of the sensor network and is equipped with an 
appropriate sensor. We assume the sensor cannot 
always read the correct concentration value and sensor 
errors are considered as a kind of random noise. Each 
robot is only equipped with a local wireless 
communicator such as WLAN [19]. Comparing the 
scale of the suspected area that the swarm of robots 
will explore, the local communication range is very 
small. Further, each robot can only communicate 
directly with its neighbors. No robot has global 
communication capability. However, each robot has 
the capability to forward data packets for each other 
over possible multi-hop paths to allow communication 
between robots otherwise out of direct wireless 
communication range. This enables the establishment 
of an ad-hoc wireless network for building global 

communications capability in the swarm. Due to robot 
mobility, the ad-hoc network topology may change 
rapidly over time. A table-driven routing protocol [16] 
is used in the network for routing all messages.   

The robots in the system use an occupancy grid 
map [1,13,21] (Fig. 1) to represent the environment. 
Each cell in the grid map is a square block with a 
unique identity number. We assume each robot’s 
communication range can only cover cells adjacent to 
a robot’s current location. Upon initialization, the 
robots have no prior knowledge about the 
environment, each cell is labeled as un-explored and 
the concentration value is unknown. 

Figure 1: The environment grid map and 
expansion cells 

 
3.2. Maintaining an ad hoc communication 
network during exploration 
 

At the initial time, all robots are deployed near 
each other and an ad-hoc wireless network is 
established among all robots. Via the ad hoc network, 
each robot can collect the aerosol concentration value 
and other information from the other robots. After a 
robot completes the measurement of the aerosol 
concentration of its current cell, a swarm behavior 
controller that implemented on each robot will be used 
for planning the next target cell.  

To ensure wide coverage without overlapping or 
interference between robots, the separation property of 
the swarm behavior requires each robot avoid 
exploration of a cell occupied by other robot. Although 
all unexplored and unoccupied cells in the grid map 
can be chosen as the robot’s next target cell, moving 
to a cell without another robot in an adjacent cell 
could result in lost network communications. To 
maintain connectivity of the ad hoc network, the 
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cohesion property of the swarm behavior uses the 
gradual expansion algorithm [4] to control each 
robot’s movement. Each robot can only navigate to the 
“expansion cells” in the grid map. According to [4], a 
robot’s “expansion cell” is defined as the cell in the 
grid map that is unexplored and unoccupied. In the 
grid map, each expansion cell has at least one robot 
located in one of its eight adjacent cells. This keeps 
the robot in contact with the ad hoc network. In figure 
1, robot A’s expansion cells are the unexplored cells 
surrounding other four robots. Robot A can keep 
connectivity with other robots by choosing any cell 
from its expansion cell list. However, to steer robot 
move towards emission source, a uniquely robot 
moving direction need to be generated by the fuzzy 
logic controller.      
 
3.3 Fuzzy Logic Controller  
 

As we indicated previously, the characteristics of 
vapor/aerosol sensors and the environment make it 
easy to generate errors in contaminant concentration 
measurement and self-localization. In addition, faults 
are possible due to a failure of robots and/or sensors. 
The FLC endows each robot with the ability to make 
decisions despite those uncertainties [18]. In our 
approach, the swarm-based FLC is implemented on 
each robot and each robot uses its swarm-based FLC 
to generate the optimal deployment location. In the 
swarm-based FLC, each individual robot considers 
other robots in the network as sensors. The other 
robots’ locations and the contaminate concentration 
sensor’s reading values can be collected through the 
ad hoc network. The information will be used as the 
inputs of the swarm-based FLC to generate a crisp 
output, the robot’s optimal moving direction. This 
moving direction will be sent to the swarm behavior 

controller that was discussed in section 3.2. The 
behavior controller will find out the “expansion cell” 
that most suits the moving direction as the robot’s 
deployment location. The block diagram of one robot’s 
swarm-based FLC is shown in Figure 2. Each robot in 
the sensor network has one set of swarm-based FLC 
system. Each component in this FLC system is 
described in the following. 

 

            

 
Figure 3 Linguistic variables of robot location 

 
3.3.1 Fuzzification. Fuzzification is defined as 

the mapping from a real-valued point to a fuzzy set 
[3]. The FLC system 
in this paper receives 
other robots’ 
information as the 
inputs of the FLC and 
the fuzzification 
module converts 
inputs into fuzzy 
linguistic variable 
inputs. There are 11 
types of linguistic 
variables as inputs to 
the FLC:  robots’ 
location angle related 
to the local robot 
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includes 8 subsets: Front Zero (FZ), Front Right (FR), 
Front Left (FL), Right (R), Left (L), Rear Zero (RZ), 
Rear Right (RR), Rear Left (RL) (Figure 3). The 
contaminant concentration that each robot’s sensor 
detected can be represented as: Low (L), Medium (M) 
and High (H).  

  

 
(a) 

 
(b) 

Figure 4 (a) Membership function of robot 
location angle set. (b) Membership function of 

contaminant concentration value set 
 
The set of a given robot’s location angles relative 

to the other robots and the reading values of each 
robot’s sensors are considered as fuzzy sets with 
triangular and trapezoidal membership functions. The 
membership function for the location angle set and 
robot moving direction set are shown in figure 4(a). 
The robot location angles range from –180 to +180. 
When a robot’s location angle is input in the 
fuzzification module, the linguistic variable sets can 
be generated according to this membership function. 
The concentration set membership is shown in figure 
4(b). The MAX and MIN values in figure 4(b) equal 
the minimum value and maximum value of all 
sensors’ reading data that the robot collected from 
other robots at each time-step. Because of the mobility 
of the sensor network in the contaminated area, the 

MIN and MAX of the membership function may have 
different value at different time-steps. For example, let 
us denote the n robots in the hazardous contaminate 
source localization simulation as R0,R1..…Rn. 
Corresponding to each robot Ri, we have following 
equations: 

{ }niiiiiiii sssssS ,1,,1,1,0, .....,........, +−=  

)(max ii S=υ             (1) 

)(min ii S=λ  

 Vector iS represents the sensor reading values 

that robot Ri gathered from other robots in the sensor 
network. We set iυ as the variable MAX and iλ as the 

variable MIN of the concentration value fuzzy set 

membership function to convert vector iS into a 

respective fuzzy set. Each robot’s sensor concentration 
reading value ranges from 0 to 100. The nearer a robot 
is to the emission source, the higher the sensor 
reading value. The sensor’s reading value will reach 
100 when the sensor and source locate at same grid 
cell. At the initial stage, the mobile sensor network’s 
location is far from the emission source. A typical 
vector of sensor reading case iS  may look like: 

iS  = {0.6711, 0.7352, 2.041, 11.11, 0.8547, 2.863, 
0.4878, 2.777, 0.4878, 0.3181}.  

To convert the crisp values in this vector into 
linguistic sets, the maximum value iυ =2.041 is 

defined as MAX and the minimum value iλ =0.3181 

is defined as MIN. By using the membership function 
shape in figure 4(b), other element of the vector can be 
classified as H, M or L separately. However, at the 
final stage, the mobile sensor network’s location is 
nearer the emission source, all of the sensor reading 
values will be very high. A typical final stage vector 
may look like:  

iS = {46, 28, 24, 21.23, 33.33, 14, 25, 16.25, 85, 61}.  

At that time, the value iλ =14 is defined as MIN and 

iυ =85 is defined as MAX.  

Although the MAX and MIN value are variable at 
different time-steps, the shape of the membership 
functions are fixed initially. For the purpose of this 
paper, as shown in figure 4(b), the simulation defines 
fuzzy sets membership as follows: 

Low(L) is in the range [0,50%] 
Medium(M) is in the range [30,70%] 
High(H) is in the range [60,100%] 

198



The ranges [0,100%] represent the range from lowest 
to the highest sensor reading value gathered by robot 
Ri at a given point in time. 
 

3.3.2 Fuzzy inference engine. Fuzzy inference 
engine is used to generate fuzzy outputs by evaluating 
the fuzzy rules with the fuzzy inputs. The fuzzy rules 
may use an expert’s experience and control 
knowledge. These fuzzy rules are described in IF-
THEN form and use the above linguistic variables. In 
this paper, the fuzzy inference engine need convert the 
input information into robot’s next movement 
direction. As we indicated in the previous section, the 
diffusion of aerosol in the contaminated area will 
induce a gradient phenomenon. A high concentration 
indicates a location near the source. The rules set 
should tend to steer all robots to the vicinity of the 
highest reported concentration. In our approach 
simulator, we use MATLAB® fuzzy logic toolbox to 
generate the FLC module. The fuzzy rules input in the 
MATLAB® FLC module are shown as follows:  

 
If concentration is HIGH and direction is FZ, 

move to FZ expansion cell.  
If concentration is HIGH and direction is FL, 

move to FL expansion cell.  
. 
. 
. 
If concentration is HIGH and direction is RR, 

move to RR expansion cell.  
 
3.3.3 Defuzzification. The output of the fuzzy 
inference engine is a fuzzy set. The output is robot’s 
moving direction and its membership function is same 
as the location angle inputs shown in figure 4(a). In 
the MATLAB® fuzzy logic toolbox, there five 
methods are provided for defuzzification: 1) centroid 
of gravity method, 2) bisector of area method, 3) mean 
of maximum method, 4) smallest of maximum method 
and 5) largest of maximum method. Since the task of 
the FLC controller is steering the robot move toward 
highest reported concentration, in our MATLAB® 
FLC module, the center of gravity method [3] is used 
to get a crisp output to control the robot’s next moving 
direction. The robot’s swarm behavior controller uses 
other robots current location to find out all expansion 
cells the robot has and uses the moving direction 
generated by the FLC to define the expansion cell 
located on the path of the moving direction as the 
robot’s optimal deployment location. 
 

4. Simulation Experiments   
 

We developed a simulation to evaluate the swarm-
based FLC approach. The simulation describes the 
suspect area as a 300 x 300 two-dimensional grid. We 
initialized one source of aerosol at a randomly selected 
position in the grid. The following mathematical 
model is used for generating the concentration of each 
cell in the grid.  
 

{ }∑
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This equation gives the concentration C(x,y) that 

can be sensed at a point (x,y) on the grid in the 
presence of m sources. Pi is the aerosol release speed 
of the source Si. K is a constant. ri is the distance 
between the grid point (x,y) and the source Si. N(x,y) is 
the noise and environmental  effect on the point (x,y). 
The random aerosol sensor detection error is 
introduced in this simulation. To simplify the 
simulation, we generate a random noise pattern on the 
300*300 cell grid map that 20% cells’ concentration 
values in the grid map are impacted by a random 
value that ranges from -10 to 10. This noise grid map 
is applied on the aerosol concentration map that 
generated by eq.2.  

The possible contaminant distribution grid map is 
shown in Figure 5. The dark spot on the up right is the 
emission source. The concentration value in the center 
of the emission source is 100. According to eq.2, the 
farther a cell is from the emission source, the lower 
the concentration value of the cell. The dark dots on 
the picture are the random noise dots. In our scenario, 
there is a 20% possibility that a robot’s sensor cannot 
precisely measure the contaminant value. Instead, the 
sensor output a random value shown as the dark dot in 
figure 5. The dark line in the figure is the routing path 
of the mobile sensor network that locates the source in 
this environment by using our swarm-based FLC 
approach. We will explain more detail in section 5. 

The number of robots deployed in this simulated 
environment is 11. All robots can be randomly 
deployed in the grid, or they can be deployed based on 
the requirements of different approaches. The time for 
a robot to move from one cell (point) to its neighbor 
cell (point) equals 1 simulation time-step.  The time 
that a robot consumed for sampling, measuring the 
concentration in each cell is a random number that 
ranges from 1 to 4 time-steps, and this number is 
unknown to the robot before it moves into its new cell. 
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The source is considered to be located only when a 
robot moves into the cell that the source located.  
 
5. Experiment Results 
 
5.1 Evaluating the searching efficiency of the 
approach 
 

Two performance indicators are used for 
evaluating the performance of the approach: 1. The 
length of simulation time-steps for the robots to locate 
the emission source. 2. The distance between the 
source and the robot nearest to the source at each time 
step. The swarm-based FLC approach is implemented 
in the simulation and used for controlling 11 robots 
exploring the environment that has 20% random noise 
impact that we talked in section 4. For performance 
evaluation, we compared the swarm-based FLC 
approach with the gradient seek approach [10] in the 
same simulation environments. The swarm-based FLC 
approach and gradient seek approach are executed on 
the simulator 30 times separately. In Table 1, we 
present the results of the simulation. A paired-t test 
verifies with 99.9% confidence, that the FLC approach 
localizes the source faster than the Gradient Seek 
approach. 

 
Table 1. Number of simulation steps required 

to localize the emission source. 

 N* 

Mean 
Steps 
Required to 
Localize 
Source 

S.D. P 
value 

FLC 29 548.3 96.3  
Gradient 29 1635.5 180.2  
Difference  -1087.2 204.2 <.001 
* Note: 30 simulations were executed, but on 
one run, the FLC failed to localize the source. 

 
Figure 5 maps the traveling trail of the mobile 

sensor network when the sensor network explores and 
locates the source in the 300x300 grid simulated 
environment. In this simulation, the swarm-based FLC 
algorithm controls each robot’s action. All robots in 
the sensor network always congregate together to 
maintain the ad-hoc communication network. At the 
same time, each robot will avoid moving into a cell 
occupied by another robot. The “+” labels on the 
picture indicates the robot group’s centroid location at 
different time-steps. Although there is much noise in 
the environment, the sensor network and FLC 

algorithm can still reach the source in a nearly optimal 
path.  

 

 
Figure 5 Location of the centroid of the 
sensor network at various simulation time 
steps. 

 
 

5.2 Evaluating the approach’s tolerance on 
partial sensor failures 
 

To test the robustness of the swarm-based FLC 
approach under the circumstance of partial sensor 
failures, we intentionally disabled some robots’ 
sensors at the beginning of the simulation to simulate 
the scenario of sensor failure (Each robot in the sensor 
network is equipped with one contaminant sensor). In 
the simulator, we that assume each robot with a 
malfunctioning sensor is not aware of the malfunction. 
Alternatively, the robot is controlled by the enemy in a 
battlefield setting and is intentionally transmitting 
erroneous information. The robot still acts normally in 
that it communicates with other robots and moves in 
the environment. In this simulation scenario, the 
robot’s sensor merely sends out a random value to 
other nodes regardless of the aerosol value its current 
location.  

Simulated failures of one, two and three sensors 
were tested separately in the simulated noisy 
environment as described in section 4. Figure 6 
presents simulation results of different number of 
failure sensors. Failure of one or two robot sensors 
(out of 11 in the sensor network) does not have a 
significant impact on the sensor network’s localization 
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of the source. With three malfunctioning sensors, the 
time for the mobile sensor network to localize the 
emission source exceeded 1000 simulation time-steps, 
therefore it was considered a failure.   

 

 
Figure 6 Results of different number of 

sensors failure simulation 
 
 

6. Discussion 
 

The environment model used in the present 
simulation is a single emission resource with a 
spherical contamination distribution function. This 
kind of model has been used to test gradient-seeking 
based approaches [6]. In addition to this single 
emission source model, the swarm-based FLC 
approach still demonstrated good performance and 
robustness in other simulated environments with 
multiple emission sources and random localized 
aerosol accumulations [5]. The detail will not be 
discussed in this paper due to limited space.   

There is no centralized control in the swarm. 
Except sharing the sensor reading with other robots in 
the swarm, each robot does not have any internal 
mechanism to make it coordinate with the action of 
other robots. Each robot acts independently and does 
not take commands from any other robot. Each robot 
controls its action merely based on the swarm behavior 
control rules implemented in the robot. However, 
robots in the environment can automatically form a 
flock and an ad hoc network can be easily initialized 
and maintained in the flock. This flock is self-
organized and highly adaptive to either individual 
robot failures or the addition of new robots to the 
flock. No modification is necessary when the number 
of robots in the swarm is increased or decreased.  

In addition, when one robot in the sensor network 
locates the source, all other robots will automatically 
swarm around the emission source without centralized 
control. Although, in the scenario we presented, when 
one robot moves into the cell containing the source, 
the task is defined as finished. Gathering the entire 
robot swarm near the sources is not required. This 
“side effect” feature of the swarm-based FLC approach 
gives us a clue that it is also a potential task allocation 
method for application with multiple heterogeneous 
agents, such as disaster rescue [4].  

The simulation experiment described in section 
5.2 demonstrated that the swarm-based FLC approach 
is robust for failure of individual robots or sensor 
malfunction. However, when the number of sensor 
failures reaches three out of eleven, the robot group 
fails to locate the emission source. This is partially due 
to the current concentration value membership 
function. This function makes the FLC outputs more 
vulnerable to faulty sensor data when three or more 
sensors (~30% sensors in the network) are faulty. As 
shown in Figure 4(b), The “High” linguistic value is 
assigned to the top 40% sensors’ readings. The 
locations of those sensors are used by FLC to decide 
the robot’s next location. The faulty sensors randomly 
generate data ranging from 0 to 100. This implies a 
99% probability of generating a concentration value 
greater than 1. However, according to the diffusion 
model in eq.2, the real concentration value will be 
lower than 1 when the distance from the emission 
source larger than 10 cells. That makes the faulty 
sensors’ readings very influential in generating 
deployment locations. This will lead the entire sensor 
network move to the wrong direction.   

 
7. Conclusion 

 
In this paper, we present a swarm-based FLC 

approach for coordinating a mobile sensor network to 
search for hazardous contaminant emission sources in 
a large-scale area. The swarm behavior controller used 
in the approach ensures that all nodes of the network 
maintain a dynamically stable ad-hoc wireless 
communication network for collaborative exploration 
and information fusion. As compared to the gradient 
seeks approach, which can easily be trapped on local 
maxima, the swarm-based FLC approach 
simultaneously considers concentration values from 
other nodes and generates optimal deployment 
locations. This will make each node immune to 
random measurement noise, sensor failures and other 
interference effects during exploration. For 
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performance evaluation, the FLC approach and the 
gradient seek approach are executed in the same 
simulation environments separately. A paired-t test 
verifies with 99.9% confidence, that the FLC approach 
localizes the source faster than the Gradient-Seek 
based approach. At the same time, the approach was 
tested in different scenarios. The results verify the 
approach has higher tolerance for sensor measurement 
error and sensor failure. 
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