
A Distributed Flocking Approach for Information Stream Clustering Analysis

Xiaohui Cui and Thomas E. Potok
Oak Ridge National Laboratory

Oak Ridge, TN 37831-6085
Cuix, potokte@ornl.gov

Abstract

Intelligence analysts are currently overwhelmed
with the amount of information streams generated
everyday. There is a lack of comprehensive tool that
can real-time analyze the information streams.
Document clustering analysis plays an important role
in improving the accuracy of information retrieval.
However, most clustering technologies can only be
applied for analyzing the static document collection
because they normally require a large amount of
computation resource and long time to get accurate
result. It is very difficult to cluster a dynamic changed
text information streams on an individual computer.
Our early research has resulted in a dynamic reactive
flock clustering algorithm which can continually refine
the clustering result and quickly react to the change of
document contents. This character makes the
algorithm suitable for cluster analyzing dynamic
changed document information, such as text
information stream. Because of the decentralized
character of this algorithm, a distributed approach is a
very natural way to increase the clustering speed of
the algorithm. In this paper, we present a distributed
multi-agent flocking approach for the text information
stream clustering and discuss the decentralized
architectures and communication schemes for load
balance and status information synchronization in this
approach.

1. Introduction

Clustering analysis is a descriptive data mining
task, which involves dividing a set of objects into a
number of clusters. The motivation behind clustering a
set of data is to find inherent structure in the data and
expose this structure as a set of groups [1]. The data
objects within each group should exhibit a large degree
of similarity while the similarity among different
clusters need be minimal [8]. Document clustering is a

fundamental operation used in unsupervised document
organization, automatic topic extraction and
information retrieval. It provides a structure for
organizing a large body of text for efficient browsing
and searching. Researches in document clustering
analysis mainly focus on how to quickly and
accurately cluster static document collection. Research
on clustering the dynamic text information stream is
limited. However, currently there is an increasing
needed for clustering analysis of the dynamic
documents to meet the challenge of analyzing text
information stream generated everyday.

New algorithms based on biological models, such
as ant colonies, bird flocks, and swarm of bees etc.,
have been invented to solve problems in the field of
computer science. These algorithms are characterized
by the interaction of a large number of agents that
follow the same rules. The Flocking model is one of
the first collective behavior models that have been
applied in popular applications, such as animation. In
addition to being used to simulate group motion, which
has been used in a number of movies and games,
Flocking model has already inspired researches in time
varying data visualization [11, 12] and spatial cluster
retrieval [5].

Early research [3] has resulted in a flocking based
clustering algorithm that can achieves better
performance than the K-means and the Ant clustering
algorithm in document clustering. This algorithm
generates clusters of a given set of data through
embedding high dimensional data items on a two-
dimensional grid for easy clustering result retrieval and
visualization. The heuristic algorithm can continually
refine the clustering result and quickly react to the
change of individual data. This character makes the
algorithm suitable for clustering dynamic changed
document information, such as the text information
stream. In this paper, we propose a bio-inspired
clustering model, the Multiple Species Flocking
clustering model (MSF), and a distributed multi-agent

Proceedings of the Seventh ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD’06)
0-7695-2611-X/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 08:02:01 UTC from IEEE Xplore. Restrictions apply.

MSF approach for dynamic updated text information
stream clustering.

The remainder of this paper is organized as follows:
Section 2 briefly discusses the related works in the
traditional and bio-inspired document clustering area.
Section 3 proposes a new multiple species flocking
(MSF) model to model the multiple species bird flock
behaviors and a MSF clustering algorithm for
document clustering. The Multi-Agent MSF approach
for Distributed Dynamic Document Clustering is
presented in section 4. Section 5 provides the detailed
experimental setup and results in comparing the
performance of the multi-agent implementation for
clustering the dynamic updated document stream on
the cluster computer and a single processor computer.
The conclusion is in Section 6.

2. Related Works

There are two major clustering techniques:
partitioning and hierarchical [8]. Most document
clustering algorithms can be classified into these two
groups. In recent years, it has been recognized that the
partitioning techniques are well suited for clustering a
large document dataset due to their relatively low
computational requirements [15]. The best-known
partitioning algorithm is the K-means algorithm and its
variants [7, 14]. This algorithm is simple,
straightforward and based on the firm foundation of
analysis of variances. One drawback of the K-means
algorithm is that the clustering result is sensitive to the
selection of the initial cluster centroids and may
converge to the local optima. The other limitation of
the K-means algorithm is that it generally requires a
prior knowledge of the probable number of clusters for
a document collection.

To deal with the limitations that exist in the
traditional partition clustering methods, a number of
computer scientists have proposed several approaches
inspired from biological collective behaviors to solve
the clustering problem, such as Genetic Algorithm
(GA) [9], Particle Swarm Optimization (PSO) [2, 10],
Ant clustering [6] and Self-Organizing Maps (SOM)
[16]. Within these clustering algorithms, Ant clustering
algorithm is a partitioning algorithm that does not
require a prior knowledge of the probable number to
clusters or the initial partition. Wu [17] and Handl [6]
proposed the use of Ant clustering algorithms for
document clustering and declared that the clustering
results from their experiments are much better than
that from K-means algorithm. However, in the Ant
clustering algorithm, the clustered data objects do not
have mobility themselves. The movement of data
objects has to be implemented through the movements

of a small number of ant agents, which will slow down
the clustering speed. Since the ant agent that carries an
isolated data object does not communicate with other
ant agents, it does not know the best location to drop
the data object. The ant agent has to move or jump
randomly in the grid space until it finds a place that
satisfies its object dropping criteria, which usually
consumes a large amount of computation time. Our
experiment results show that the Ant clustering
algorithm needs more iteration to generate an
acceptable clustering result.

3. The Multiple Species Flocking (MSF)
Clustering Algorithm

3.1 Flocking Model

Flocking model was first proposed by Craig
Reynolds [13]. It is a bio-inspired computational
model for simulating the animation of a flock of
entities called “boid”. It consists of three simple
steering rules that need to be executed at each instance
over time. Three basic rules include: (1) Separation:
Steering to avoid collision with other boids nearby. (2)
Alignment: Steering toward the average heading and
match the velocity of the neighbor flock mates. (3)
Cohesion: Steering to the average position of the
neighbor flock mates. The three basic rules are
sufficient to reproduce the moving behaviors of a
single species bird flock on the computer. However,
our experiments indicate these three rules will
eventually result in all boids in the simulation forming
a single flock. It can not reproduce the real phenomena
in the nature: the birds or other herd animals not only
keep themselves within a flock that is composed of the
same species or the same colony creatures, but also
keep two or multiple different species or colony flocks
separated.

3.2 Multiple Species Flocking Model

In this report, we propose a new Multiple Species
Flocking (MSF) model to model the multiple species
bird flock behaviors. In the MSF model, in addition to
the three basic action rules in the Flocking model, a
fourth rule, “feature similarity rule”, is added into the
basic action rules of each boids to influence the motion
of the boids. Based on this rule, the flock boid tries to
stay close to other boids that have similar features and
stay away from other boids that have dissimilar
features. The strength of the attracting force for
similarity boid and repulsion force for dissimilarity
boid is inversely proportional to the distance between

Proceedings of the Seventh ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD’06)
0-7695-2611-X/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 08:02:01 UTC from IEEE Xplore. Restrictions apply.

the boids and the similarity value between the boids’
features.

Based on the MSF model, we implemented the
multiple species bird flock simulation as shown in
Figure 1. In this simulation, there are four kinds of
boid species and each species have 200 boids. We use
four different colors to represent different species. All
together, 800 boids are simulated in the environment.
At the initial stage, each boid is randomly deployed in
the environment as shown in Figure 1(a). Each color
dot represents one boid. There is no central controller
in the simulation. Each boid can only sense boids
within a limited range and move in the simulation
environment by following the four action rules of MSF
model. Although there is no intention for each boid to
form a same species group and to separate the different
species from each other, after several iterations, as
shown in Figure 1(b), the boids in same species are
grouped together and different species are separated.

(a) (b)
Figure 1: Multiple species bird flocking

simulation

3.3 MSF document clustering algorithm

One application of the MSF model is the clustering
document collection [3]. Inspired by the bird’s ability
of maintaining a flock as well as separating different
species or colony flocks, the MSF clustering algorithm
uses a simple and heuristic way to cluster document
datasets. In the MSF clustering algorithm, we assume
each document vector is projected as a boid in a 2D
virtual space. The document vector is represented as
the feature of the boid. The boids that share similar
document vector feature (same as the bird’s species
and colony in nature) will automatically group together
and became a boid flock. Other boids that have
different document vector features will stay away from
this flock. After several iterations, the simple local
rules followed by each boid results in generating
complex global behaviors of the entire document flock,
and eventually a document clustering result is
emerged.

4. Multi-Agent Approach for Document
Clustering

Inevitably, the MSF clustering algorithm approach
of using single processor machine to cluster the
dynamic text stream requires a large amount of
memory and faster execution CPU. Since the
decentralized character of the MSF algorithm, using
Multi-Agent techniques to develop a distributed MSF
clustering approach can increase the clustering speed
of the algorithm.

In the MSFC algorithm, the document parse,
similarity measure and boid moving velocity
calculation are the most computational consumption
parts. The distributed implementation should divide
these computational tasks into smaller pieces that can
be scheduled to concurrently run on multiple
processors. In order to achieve good performance on
distributed computing, several issues must be
examined carefully when designing a distributed
solution. First is the load balance. It is important to
keep load balancing among processing nodes to make
sure each node have approximately same workload.
Second is the environment states synchronization. It is
necessary for a distributed implementation to develop a
synchronization algorithm which is capable of
maintaining causality. Third is reducing the
communication between nodes. That include the
communication overhead of the environment states
synchronization and control message exchange
between nodes.

Based on these requirements, we developed a
distributed multi-agent based (MAB) implementation
of the MSF clustering algorithm for clustering the text
information stream. In MAB, each boids are modeled
and implemented in terms of software agents, which
makes boids pro-active, adaptive and communicable.
The MAB implementation supports distributed load
balance in a very natural way. Since each boid agent is
implemented to work for document retrieval, parse,
similarity comparison and moving velocity calculation
independently, it is straight-forward to let different
agents run on different machines to achieve the load
balance. Each agent can be added, removed or mobiled
to other machine without interrupt other agent’s
running. The system can be scalability and pro-activity
to the change of work load. In the following sessions,
we described the two experiments that helped us to
find the best schemes for load balancing,
synchronizing and agent communicating in the MSF
multi-agent approach.

Proceedings of the Seventh ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD’06)
0-7695-2611-X/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 08:02:01 UTC from IEEE Xplore. Restrictions apply.

5. Experiments and Results

5.1 Multi-Agent platform and experiment
environment setup

The distributed MSF clustering algorithm is
implemented on the JADE agent platform. JADE (Java
Agent DEvelopment Framework) is a software
framework fully implemented in Java language. JADE
is a FIPA compliant agent platform. As a distributed
agent plate form, the JADE agent can be split on
several hosts. The OS on each host is not necessary
same. The only environment required is a Java virtual
machine (JVM). Each JVM is a basic container of
agents that provide a complete run time environment
for agent and allow several agents to concurrently
execute on same container.

In the MSF MAB implementation, each boid is
implemented as a jade agent. The agent has the ability
to calculate moving velocity based on the four actions
rules we discussed in previous session. Each agent
carries a feature vector to represent a document vector.
The environment used in the experiment consists of a
continuous 2D plane, in which agents are placed
randomly on a grid within a 4000 4000 squire unit
area. All experiments were carried out on an
experiment Linux computer cluster machine. The
cluster machine consists of one head node, ASER and
three cluster nodes, ASER1, ASER2, and ASER3,
which are connected with Gigabit Ethernet switch.
Each node contains one 2.4G Intel Pentium IV
processor and 512M memory. To graphically display
the usage of CPU and network bandwidth of each node
in the computer cluster, we used Linux cluster
management software, LCM
(http://linuxcm.sourceforge.net/), for real-time
displaying all cluster nodes’ processor and network
usage.

5.2 Datasets

The document dataset used in the experiments is
derived from the TREC-5, TREC-6, and TREC-7
collections and represented as a set of vectors X={x1,
x2, …., xn}, where the vector xi corresponds to a single
object and is called “feature vector” that contains
proper features to represent the object. The feature
value is represented using the Vector Space Model
(VSM) [4]. Before translating the document collection
into VSM, the very common words (e.g. function
words: “a”, “the”, “in”, “to”; pronouns: “I”, “he”,
“she”, “it”) are stripped out completely and different

forms of a word are reduced to one canonical form by
using Porter’s algorithm [12].

To simulate the dynamic updated document
collection, the document vector of each agent is
periodically updated with new document vector and
old document vector is considered as expired. For easy
comparing the performance of different scenario, in the
experiments, each agent’s document feature will be
updated by new document for ten times during the
whole life of the system execution. In each experiment,
the system will run 1000 cycles and the average
document update gap is 100 time-steps.

5.3 Experiment 1: Communication schemes

In this experiment, we compared the performance
of different communication schemes for boid agents
exchanging the environment information when flying
in the virtual space. In a distributed system, the
environment information is spread out among the
processors involved in the system. An agent doesn’t
know other agent information if it is not informed, it
has to commute with other agents to collect enough
information, does an exhaustive search to find out
which agents are located within its range, and
calculates the force that it is pushed to travel based on
the neighbor agents’ information. All these require that
each agent in the system have a global view of other
agents’ status information.
There are two basic communication schemes to update
the agent’s information on different processors. The
easy communication scheme is broadcast. As shown in
Figure 2(a), each agent in the system broadcast its
status information to all other agents wherever they are
located in the same node or different nodes. Each agent
will also use the information it received from other
agents’ broadcast to find out its neighbor boid mates
and calculate the next moving velocity.

(a) Broadcast (b) Location Proxy
Figure 2: The architectures of different

communication schemes

Another scheme is the location proxy scheme. As
shown in Figure 2(b), there is a location proxy agent in
the computer node. Each agent will only inform its
status to the location proxy agent in the same node.
The agent also inquires the location proxy agent to find

Proceedings of the Seventh ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD’06)
0-7695-2611-X/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 08:02:01 UTC from IEEE Xplore. Restrictions apply.

out its neighbor mates. At every time step, after
collecting the status of all agents that located in the
same node, location proxy agents will broadcast this
information to other proxy agents that located on
different nodes, which enable the location proxy agent
on each node to have global view of the whole system.

In experiment one, two communication scheme
simulations, broadcast and location proxy are
implemented in the experiment. The simulation is
executed on a single cluster node, ASER1. To reduce
the communication delay, all agents, including the
system agents of JADE, are executed on the same JVM
container. To measure the performance we utilize a
starter agent which initiates the boid agent process and
measures time. The running times for different number
of agents is recorded using java’s
System.currentTimeMillis() method and the unit is
milliseconds. Both simulations will be executed for ten
times. The reported results are time average over 10
simulation runs of 1000 cycle each. The time reported
does not include the overhead of starting and finishing
agents, only the time consumed between boid start fly
in the 2D space and end the fly after 1000 cycles.
Experimental results are summarized in Figure 3.

Figure 3: The performance of different

communication schemes

As shown in Figure 3, the broadcast scheme
requires more executing time than location proxy
scheme. The broadcast scheme executing time
increases very fast as the agent number increased. In
broadcast scheme, each boid agent has to broadcast its
current position to other agents in the virtual space at
every step and collects the information broadcast by
other agents to find out it neighbor agents. The
communication complexity is O((n-1)!) at each time
step. This scheme is not an efficient solution when a
large amount of boid agents are simulated. In the
location proxy scheme, all boid agents only report their
new position to the location proxy agent when they
move to a new place. The boid agent also inquires the
location proxy agent for its nearby boid agent mates
instead of searching by itself. In this communication
scheme, boid agents do not communicate with each

other. This scheme will largely reduce the
communication cost within the agent group. The
communication complexity is O(2n).

5.4 Experiment 2: Performance of the
distributed MSFC implementation

The second experiment is to illustrate the
performance enhancement by comparing the time cost
for executing the same MSF MAB implementation on
a three nodes cluster machine and a single processor
machine. To reduce the impact of the JADE platform
computation requirement, in both simulations, the
JADE main container runs on head node of the cluster
which is not count in the simulation nodes. In the three
nodes cluster distributed model, the boid agents are
equally distributed on three nodes and each node has
one location proxy agent for collecting agent position.
The location proxy on each node will exchange boid
agents’ position at every step. The architecture of the
distributed model is shown in Figure 4.

Figure 4: The architectures of multiple nodes

implementation

Different numbers of boid agents are tested on both
simulation and the boid agent’s execute time for
finishing 1000 circle is recorded. Because the
distributed model requires three processes to simulate
the document clustering, the time is the average time
consummation for all agents running on different
CPUs after 1000 cycles. The experiment results are
shown in Figure 5. Aser 1-2-3 curve line in the chart
indicates the time consummation of the clustering
simulation executed on the three nodes cluster
machine. Aser curve line in the chart indicates the time
consummation of the clustering simulation executed on
the single processor machine. Although the experiment
shows three nodes simulation didn’t cut the total time
to one third of the total time of the simulation on single
processor machine because of the overhead for agent
update status with agent located on the same node or
other node, still, the results show that the time saving

Proceedings of the Seventh ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD’06)
0-7695-2611-X/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 08:02:01 UTC from IEEE Xplore. Restrictions apply.

of the distributed algorithm is well-suited scenarios
scales.

Figure 5: The executing time for 3 node

cluster machine and one single processor

machine

6. Conclusion

In this study, we proposed a new multiple species
flocking (MSF) model and a distributed multi-agent
MSF approach for document clustering. In this
approach, each document in the dataset is represented
by a bird agent. Each agent follows four simple local
steering rules to move in the virtual space. Agents
following these simple local rules emerge complex
global behaviors of the whole flock and eventually the
agents that carrying document belong to same class
will gradually merge together to form a flock. All
agents are evenly deployed on different nodes in a
distributed computing environment for load balance.
On each node, a location proxy agent is introduced for
maintaining the agents’ location and synchronizing the
status between nodes in the cluster machine.

 The advantage of the MSF clustering algorithm is
the heuristic principle of the flock’s searching
mechanism. This heuristic searching mechanism helps
bird agents quickly form a flock and reactive to the
change of any individual document. Since the bird
agent in the algorithm continues fly in the virtual space
and join the flock it belongs to, new clustering results
can be quickly re-generated when information stream
is continually feed into the system.

7. References

[1] M. R. Anderberg, Cluster Analysis for
Applications, Academic Press, Inc., New York,
NY, 1973

[2] X. Cui, P. Palathingal, T. E. Potok, Document
Clustering using Particle Swarm Optimization,
IEEE Swarm Intelligence Symposium 2005,
Pasadena, California, 2005, pp. 185-191

[3] X. Cui, T. E. Potok, A Flocking Based Algorithm
for Document Clustering Analysis, Journal of
System Architecture, Special issue on Nature
Inspired Applied Systems, 2006. (To appear).

[4] B. Everitt, Cluster Analysis. 2nd Edition. Halsted
Press, New York, 1980.

[5] G. Folino, G. Spezzano, “SPARROW: A Spatial
Clustering Algorithm using Swarm Intelligence”,
Applied Informatics 2003 (AIA2003), Innsbruck,
Austria, 2003 pp. 50-55.

[6] J. Handl and B. Meyer, Improved ant-based
clustering and sorting in document retrieval
interface, Proceedings of the Seventh International
Conference on Parallel Problem Solving from
Nature, volume 2439 of LNCS, Springer-Verlag,
Berlin, Germany, 2002, pp. 913–923.

[7] J. A. Hartigan, Clustering Algorithms. John Wiley
and Sons, Inc., New York, NY, 1975.

[8] K. Jain, M. N.Murty, and P. J. Flynn, Data
Clustering: A Review, ACM Computing Survey,
Vol. 31, No. 3, 1999, pp. 264-323.

[9] G. Jones, A. Robertson, C. Santimetvirul, and P.
Willett, Non-hierarchic document clustering using
a genetic algorithm. Information Research, 1(1)
(1995).

[10] V. D. Merwe and A. P. Engelbrecht, Data
clustering using particle swarm optimization.
Proceedings of IEEE Congress on Evolutionary
Computation 2003 (CEC2003), Canbella,
Australia, 2003, pp. 215-220.

[11] V. Moere, Information Flocking: Time-Varying
Data Visualization using Boid Behaviors,
Proceedings of the Eighth International Conference
on Information Visualization, 2004, pp. 409-414.

[12] M.F. Porter, An Algorithm for Suffix Stripping.
Program, 14 no. 3, 1980, pp. 130-137.

[13] C. Reynolds, Flocks, Herds, and Schools: a
distributed behavioral model, Computer graphics,
21(4), July 1987, pp. 25-34.

[14] S. Z. Selim, and M. A. Ismail, K-means type
algorithms: A generalized convergence theorem
and characterization of local optimality, IEEE
Trans. Pattern Anal. Mach. Intell. 6, 1984, pp. 81–
87.

[15] M. Steinbach, G. Karypis, V. Kumar, A
Comparison of Document Clustering Techniques,
Text Mining Workshop, KDD, 2000.

[16] J. Vesanto and E. Alhoniemi, Clustering of the
Self Organizing Map, IEEE Transactions on
Neural Networks, Volume 11, Number 3, 2000, pp.
586 600.

[17] B. Wu and Z. Shi, A clustering algorithm based on
swarm intelligence, Info-tech and Info-net
Proceedings. ICII 2001, vol. 3, 2001, PP. 58-66.

Proceedings of the Seventh ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD’06)
0-7695-2611-X/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 08:02:01 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

