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Abstract—Automated service classification is the foundation
for service discovery and service composition. Currently, many
existing methods extracting features from functional descrip-
tion documents suffer the problem of data sparsity. However,
beside functional description documents, the Web API ecosys-
tem has accumulated a wealth of information that can be used
to improve the accuracy of Web service (API) classification. At
the moment, there is an absence of a unified way to combine
functional description documents with other sources of infor-
mation (e.g., attributes, interactions and external knowledge)
accumulated in the Web API ecosystem for API classification.
To address this issue, we present a dual-GCN framework
that can effectively suppress the noise propagation of textual
contents by distinguishing functional description documents
and other sources of information (specifically Mashup-API co-
invocation patterns by default in this paper) for API classifica-
tion. This framework is extensible with the ability to include
different sources of information accumulated in the Web API
ecosystem. Comprehensive experiments on a real-world public
dataset demonstrate that our proposed method can outperform
various representative methods for API classification.

Keywords-Web Service; API Classification; Web API Ecosys-
tem; Graph Convolutional Network; Knowledge Graph

I. INTRODUCTION

Web APIs are basic building blocks in software applica-

tions enabling automated interactions among heterogeneous

components. As a new paradigm, Web APIs significantly

reduce software development costs by providing storage

services, message services, location services, and so on. In

the era of big data, Web service is a resource with great

value-added potential, which has become a common concern

in academia and industry. With the rapid development of

the digital economy, various kinds of Web services have

been published to meet user requirements. Therefore, how

to efficiently select Web APIs satisfying user requirements

is a very important task in the field of service-oriented com-

puting. Accurate service classification can greatly reduce the

search space of Web services, thus effectively promoting the

discovery and composition of Web services.

� Corresponding author.

In recent years, researchers in the field of service com-

puting have made significant efforts on Web service clas-

sification. Many methods have been proposed to extract

useful information from functional description documents

for service classification [1], [2]. For example, the LDA

topic model [3] is utilized to obtain the topic distributions

of Web services. Then Web services are classified by calcu-

lating the similarity among them based on topic vectors.

With the rise of deep learning, some researchers try to

classify Web services using deep learning techniques [4],

[5]. They firstly represent words as numeric vectors through

the word embedding technology, and then use CNN-based

or RNN-based neural networks to extract implicit features

for service classification. However, these methods mainly

use functional description documents to classify services,

which are often vulnerable to data sparsity. If description

documents are insufficient, these methods will not be able to

achieve the desired results. Based on the data analysis of the

ProgrammableWeb1, which is the largest online Web service

registry, we observe that functional description documents of

Web services are often short, sparse, with little information

or even missing texts.

Recently, knowledge graph (KG) has been widely used

in many scenarios such as text classification [6] and movie

recommendation [7] due to its ability to contain fruitful

information. Knowledge graph is a type of heterogeneous

graph consisting of plenty of entity-relation-entity triplets.

The Web API ecosystem has accumulated a wealth of knowl-

edge that can be used to enhance the accuracy of service

classification [8]. To the best of our knowledge, the use

of other sources of information (interactions, attributes and

external knowledge) accumulated in the Web API ecosystem

for service classification is still limited. In particular, there is

an absence of a unified way to combine functional descrip-

tion documents with other sources of information for API

classification. Recently, some existing works have utilized

dual neural networks (such as dual-CNN [9], dual-LSTM

[10] etc.) to extract features from different perspectives. In

1https://www.programmableweb.com/
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addition, if the description documents of APIs use the same

words which have no practical meaning as other entities in

the Web API ecosystem, the single-graph evolution will gen-

erate noises through the propagation of word co-occurrence

information. As more useful information accumulated in the

Web API ecosystem is introduced, it is difficult for single-

graph evolution to decide what information to use or not.

How to exploit key knowledge instead of all the knowledge

to benefit service classification needs to be further investi-

gated [11].

Inspired by these, we propose a unified and extensible

Web service classification framework. Specifically, we firstly

use a graph to capture functional description documents of

APIs and then we construct another graph to capture the

most useful knowledge (namely Mashup-API co-invocation

patterns by default in this paper) accumulated in the Web

API ecosystem, which can be flexibly extended to include

other useful knowledge. It is worth mentioning that dual-

graph evolution can isolate API description documents from

other entities (Mashup documents by default in this paper)

to prevent word-level noise propagation. Because the noise

generated by capturing relationships between APIs and other

entities through word co-occurrence is far greater than the

benefit, especially when more other information is intro-

duced. Finally, we use dual Graph Convolution Networks

(GCN) [12] consists of two parallel branches which respec-

tively capture word co-occurrence information, document-

word relationships in API description documents and entity

association information for joint training of parameters. In

this way, we can effectively address the problem of data

sparsity, providing a unified way to combine functional

description documents with other sources of information in

the API ecosystem, avoiding word-level noise propagation

and achieving better service classification performance.

The main contributions of this paper can be summarized

as follows:

• We propose a dual-GCN based Web service classifica-

tion framework that can effectively suppress noise prop-

agation of textual contents by distinguishing functional

description documents and Mashup-API co-invocation

patterns accumulated in the Web API ecosystem.

• Our proposed service classification framework is exten-

sible, and it can introduce more useful knowledge (such

as interactions, attributes and others) accumulated in the

Web API ecosystem for service classification.

• We conduct comprehensive experiments on a real-world

public dataset, which demonstrates that our proposed

method can not only achieve better service classifica-

tion accuracy but also have stronger robustness than

various representative methods.

The rest of the paper is organized as follows. Section II

provides some backgrounds about the Web API ecosystem

and graph convolutional network. Section III reviews some
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Figure 1. A full schema of knowledge graph in the Web API ecosys-
tem. The rex dotted area denotes the co-invocation relationships between
Mashups and APIs.

Figure 2. A sample schema of Mashup: the OnTheWay application
integrates the Google Maps API and the Foursquare API to provide route
optimization services.

recent related studies. Section IV presents the details of our

proposed method. Section V demonstrates the experimental

results. Finally, section VI concludes our paper and point

out some future research directions.

II. BACKGROUND

A. Web API Ecosystem and Mashup-API Co-invocation

In the past few years, the number of Web APIs has

increased dramatically. For example, as of February 2020,

more than 23,000 Web APIs have been published on Pro-

grammableweb, an increase of about 80% from five years

ago [13]. Nevertheless, the lack of semantic description of

the Web APIs seriously affects their discovery, sharing and

integration. To deal with this issue, Dojchinovski et al. have

presented the Linked Web APIs dataset2 including prove-

nance, temporal, technical, functional, and non-functional

aspects of Web APIs [8], which is shown in Figure 1. The red

dotted area denotes the co-invocation relationships between

Mashups and APIs.

A Mashup application is usually created by combining

multiple Web APIs containing different functionalities. Ac-

2http://linked-web-apis.fit.cvut.cz/
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cordingly, a co-invocation pattern can be found among these

Web APIs. For a more intuitive understanding of Mashup-

API co-invocation patterns, Figure 2 shows a Mashup sce-

nario for a mobile application called OnTheWay3. Basically,

OnTheWay can help travelers to create quick and easy per-

sonalized road trips. It integrates the Google Maps API4 and

Foursquare API5 to facilitate an effective route optimization

based on geographic location and public comments shared in

social platform. Specifically, the Google Maps API provides

basic functions related on maps for searching and marking

specific locations, while the Foursquare API utilizes social

capabilities focusing on public comments among friends on

specific locations. By combining advantages of two types of

APIs, OnTheWay can provide users with satisfying road trips

and improve user experience. For example, a user can easily

find a restaurant with a high public comment rate nearby.

B. Graph Convolution Networks

Graph Neural Networks have received increasing atten-

tions in recent years. Kipf et al. [12] extended the mature

neural network model (such as CNN) to graphs of arbitrary

structure, and proposed a simplified graph neural network

model, named Graph Convolutional Network (GCN). GCN

can obtain the embedding vectors of entities through the

adjacency features between entities, which can effectively

capture the higher-order structure information in a hetero-

geneous graph. Specifically, we define an undirected graph

G(V,E), V (|V | = N) as a set of N nodes, and E as a set

of edges. We assume that all nodes are self-connected. Then,

we use A ∈ R
N×N and D to represent the adjacency matrix

and degree matrix of G respectively, where Dii =
∑

j Aij.

We assume that X ∈ R
N×M is a feature matrix of all

entities, where M is the dimension of the feature vectors.

By stacking multiple layers of GCN, higher-order features

can be obtained. The propagation rule of a multilayer GCN

network is as follows:

L(l+1) = ρ
(
D− 1

2AD− 1
2L(l)W(l)

)
(1)

Where l indicates the number of layers. W(l) represents the

trainable weight matrix of the lth layer. ρ(.) denotes an

activation function and L(0) = X .

III. RELATED WORK

The effective and accurate classification of Web services is

a basic research issue. To this end, researchers have invested

a lot of efforts. General speaking, existing works on Web

service classification can be divided into two categories

including one based on conventional machine learning meth-

ods, and the other based on deep learning methods.

3http://www.onthewayapp.com
4https://developers.google.com/maps/
5https://api.foursquare.com/

A. Conventional Machine Learning based Methods

Liu et al. [3] leveraged SVM as the basic classifier, then

they utilized latent dirichlet allocation (LDA) to reduce the

feature dimension to solve the sparsity problem and improve

the efficiency of service classification. Faced with the rich

knowledge accumulated in the web ecosystem, Liang et

al. [14] constructed a heterogeneous network with multiple

types of relationships and used the RWR (random walk

with restart) model to capture the degree of association

between all types of entities. However, as the number of

entities increases, the time cost will become very large. Liu

et al. [2] proposed a semantic Web service classification

method based on Naive Bayes. They used three stages of

bayesian classification to classify semantic Web services

in terms of service interfaces and execution capabilities.

Finally, they used the information gain theory to determine

the classification effects of different features.

B. Deep Learning based Methods

As deep learning technology shines in various fields,

Yang et al. [4] proposed a deep neural network framework

stacked 2-D CNN and Bi-LSTM to capture features of API

description documents in small regions and sequences. Cao

et al. [1] used Bi-LSTM to automatically learn about features

of Web services. Then they used topic vectors of Web service

documents obtained through offline training to enhance topic

attention processings of Web services. Ye et al. [5] firstly

used a wide learning model to make breadth predictions

for Web services, then they used a Bi-LSTM model to

mine semantic information of Web service documents to

perform depth predictions. Finally, all the prediction results

of breadth and depth are integrated into the final result of

service classification by a linear regression algorithm.

IV. DUAL-GCN API CLASSIFICATION FRAMEWORK

In this section we will introduce details of our proposed

Dual-GCN Web service classification framework.

A. Co-invocation Graph Component

We construct a co-invocation relationship graph according

to the historical co-invocation records between Mashups and

APIs. The number of nodes in the co-invocation graph is the

sum of the number of Mashups and APIs. We assign weights

of edges based on co-invocation relationships. Specifically,

for source node i and target node j, the number of links

from i to j can be defined as η(i, j). Similarly, k in η(i, k)
denotes the node connected to i. In our refined knowledge

graph (Mashup-API co-invocation graph), each entity has at

most one link with another entity, while in the Web API

ecosystem, there may be multiple links between two entities

due to other sources of information. Therefore, to enable

the model for the inclusion of more useful knowledge in the
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Figure 3. A sample illustration of the proposed Dual-GCN model. Nodes begin with ”a” are API nodes, nodes begin with ”m” are Mashup nodes, nodes
begin with ”d” are description document nodes, nodes begin with ”w” are word nodes. The API and its description document have the same color. Different
colors mean different API and document classes. For ease of distinction, in the description graph, gray lines are word-word edges, black bold lines are
document-word edges. A multi-layer GCN learns features from R raw channels to E feature embedding channels.

future, the weight assignment between Mashups and APIs

is given by matrix A1:

A1
ij =

⎧⎨
⎩

η(i, j)∑
k η(i, k)

if η(i, j) > 0,

0 otherwise

(2)

We initialize the feature matrix X1 = I1 (I1 ∈ R
N1×N1

,

is a identity matrix, where N1 is the sum of the number of

Mashups and APIs) as the input of the GCN.

B. Text Graph Component

The creation of a text graph is similar to co-invocation

graph except that the number of nodes in the graph is

the sum of the number of unique words and documents.

In addition, the weight distribution between nodes needs

to be reconfigured [6]. Term frequency-inverse document

frequency (TF-IDF) is a widely used measure to reflect

the contribution of a single word to a document. Point-

wise mutual information (PMI) is often used to measure

the correlation between two variables. In this component,

we leverage TF-IDF and PMI respectively to define weights

for document-word edges and word-word edges only consid-

ering positive PMI values. The weight assignment between

node i and node j is initialized as follows:

A2
ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

TF-IDFij i is document, j is word

PMI(i, j) i, j are words, PMI(i, j) > 0

1 i = j

0 otherwise

(3)

We remove words with a frequency lower than 5 (by

default). We set up a fixed-size (10 by default) window to

capture the word co-occurrence information. We initialize

the feature matrix X2 = I2 (I2 ∈ R
N2×N2

, is a identity

matrix, where N2 is the sum of the number of word nodes

and document nodes) as the input of GCN.

C. Learning the Proposed Model

After initializing two adjacency matrixes (A1 and A2) and

two feature matrixes (X1 and X2), training steps of the

model are executed from left to right as shown in Figure 3.

Graph Convolutional Layer. Two or more layers of GCN

allow non-adjacent information exchange, although there

are no direct Mashup-Mashup, API-API and document-

document edges in the graph. The propagation rules of two-

layer GCN models are defined by the following equations:

Z1 = f(X1, Â1) = Â1 ρ(Â1X1W 1
(0))W

1
(1) (4)

Z2 = f(X2, Â2) = Â2 ρ(Â2X2W 2
(0))W

2
(1) (5)

Here, we can calculate Â = D− 1
2AD− 1

2 ahead of time.

W(0) and W(1) are learnable weight parameter matrixes. ρ
is an activation function, e.g. a ReLU ρ(x) =max(0, x).
Look Up Layer. Look up layer is a linear layer that does

not involve any parameter learning. The created graphs

contain different types of entities such as Mashup entities

and API entities in co-invocation graph, word entities and

API document entities in text graph. In our task, we only

care about feature vectors of APIs (API entities and API

description documents). In the look up layer, we filter out

the corresponding feature vectors based on the index list of

APIs, e.g., a = (a1, a2, a3...an) and the index list of API

documents, e.g., d = (d1, d2, d3...dn), where n denotes the

number of APIs. The index of the API entity corresponds to

the index of the document, e.g., a1 → d1. Feature matrixes

of API entities and API documents are obtained by:

V 1 = Z1[a] (6)

V 2 = Z2[d] (7)

where V 1 denotes the feature matrix of API entities. V 2

denotes the feature matrix of API documents.
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Full Connection Layer. We combine features extracted

from the two components by matrix addition. Then the result

is placed into a full connection layer (ffc):

O = ffc(V
1
⊕

V 2) (8)

where
⊕

denotes the element-wise addition. O ∈ R
n×c

denotes the output of the full connection layer, c is the

number of categories.

Output Layer. Finally, the result of Web API classification

is obtained through a softmax activation function:

softmax(xi) =
exp(xi)∑
j exp(xj)

(9)

Y = softmax(O) (10)

where Y denotes all predictions results. The loss function is

defined as the cross-entropy error of all labeled APIs:

Loss(Y, T ) = −
n∑

ni=1

c∑
cj=1

Tnicj ln Ynicj (11)

where T is the label indicator matrix. All the parameters in

the model are trained via gradient descent.

V. EVALUATION

We conduct comprehensive experiments to evaluate our

proposed method for Web service classification. Specifically,

three Questions need to be answered:

1) Q1: Whether our model of using dual-graph evolution

performs better than models only using single-graph

evolution for Web service classification?

2) Q2: What is the performance of our proposed method

in comparison with some representative methods for

Web service classification?

3) Q3: Can our proposed method achieve satisfactory

results on limited labeled data?

Table I
STATISTICS OF DATASET.

Item Type Statistics
Number of Mashups 7,415
Number of Web APIs 11,339
Number of Mashups participating in co-invocation 7,328
Number of Web APIs participating in co-invocation 1,366
Mashup-API co-invocation matrix density 1.3646× 10−4

Number of Mashup used in co-invocation graph 7,094
Number of Web API used in co-invocation graph 1,236
Mashup-API co-invocation matrix density (new) 1.4096× 10−4

A. Dataset Statistics and Preparation

We evaluate our method using the Linked Web APIs
dataset. It consists of over half million of RDF triplets,

which contains 11,339 Web APIs, 7,415 Mashups and nearly

7,717 Mashup profiles of developers crawled from Pro-

grammableWeb. Entities (Mashups, APIs, publishers, cre-

ators, homepage et al.) and various types of relationships

Figure 4. The distribution of co-invocation frequency for APIs.

Figure 5. The number distribution of APIs in different categories.

(usedAPI, assignedTag, assignedCategory et al.) between

them are described with a unique URL. Most of Mashups

and APIs only have a short description document.

We further explore the dataset, which reveals two main

characteristics in Mashup-API co-invocation patterns:

• Sparsity. We observe that only about 12% of APIs

have been included once or more in the history of

Mashup developments. This is the reason behind the

low density of Mashup-API co-invocation matrix. A

Mashup development contains only a limited number

of APIs. The average number of APIs used per Mashup

is 2.1. More specifically, 92.4% of Mashups use fewer

than 5 APIs.

• Imbalance. We find that existing Mashups invoke Web

APIs at an uneven rate. Some popular APIs are invoked

very frequently. For example, the Google Map API has

been invoked more than 2,000 times in the dataset. On

the contrary, some less popular APIs are invoked less

than 5 times. Figure 4 shows the frequency distribution

of APIs which have been invoked in Mashup develop-

ments. We further find out that Top-100 popular APIs

are involved in 80.8% of Mashup developments.

In our experiment, we remove Mashups and APIs without
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description documents and APIs in small categories with less

than 10 APIs same as [4]. After that, we remove Mashups

without invoking APIs. Finally, the dataset contains 7,094

Mashups and 1,236 APIs with 39 categories. Due to the

small size and imbalance of the dataset, randomly splitting

the dataset cannot make the training set and testing set follow

the same distribution in small categories. We randomly select

80% of APIs in each category for training, and the remaining

20% of APIs in each category for testing same as [4]. Finally,

the dataset was divided into 1002 training APIs and 234

testing APIs. Some basic statistics of the dataset are given in

Table I. The category distribution of APIs is shown in Figure

5. For API functional description documents, we remove

punctuations, stop words and transform all words to their

root forms using the lemmatizer in the NLTK toolkit6.

B. Representative Methods for Comparison

We select various representative methods and some state-

of-the-art methods mentioned in related work for com-

parisons with Top-1 accuracy, Top-5 accuracy and F1-

macro metrics. Specifically, we adopt 6 conventional ma-

chine learning based methods including AdaBoost (AB),

K-NearestNeighbor (KNN), Logistic Regression (LR), Ran-

dom Forest (RF), LDA-L-SVM [3] and (TS-NB) [2]. We

also adopt 5 deep learning-based methods for Web service

classification including CNN [15], C-LSTM [16], R-CNN

[17], TA-BiLSTM [1], ServerNet [4]. In addition, we also

compare our dual-graph evolution model with three single-

graph evolution models, e.g., T-GCN [6] (Text Graph),

I-GCN (Invocation Graph) and C-GCN (Comprehensive

Graph) containing all information in one graph, to show

the advantages of our proposed method. In C-GCN, we

use two different adjacency matrices to represent the text

relationships and invocation relationships respectively. C-

GCN-w means sharing parameters, C-GCN-non-w means

not sharing parameters.

C. Experimental Parameters and Environment

In our proposed method, the two-layer GCN contains

256 hidden units and 128 hidden units respectively, and the

full connection layer contains 39 hidden units. An Adam

optimizer with a learning rate of 0.001 is used. In order to

avoid overfitting, we add a dropout layer between every two

layers, with a drop probability of 0.5. We set L2 loss weight

as 4× 10−5. For graph-based method, any pre-trained word

embedding is not needed. For text-based methods, we exploit

200-dimensional GloVe7word vectors for text representation.

We utilize the sklearn library8 to implement conventional

machine learning algorithms with optimal parameters. We

implement all deep learning methods based on PyTorch9.

6http://www.nltk.org/
7https://nlp.stanford.edu/projects/glove/
8https://scikit-learn.org
9https://pytorch.org/

D. Performance of Web API Classification

In the experiments, we use the Top-N accuracy metric

to evaluate the performance of all methods. Top-1 accuracy

can reflect the precision of the method. However, for multi-

category tasks (39 categories in our task), Top-5 accuracy

can reflect the performance of the Top-5 category list con-

taining real results. In addition, we evaluate the performance

of methods by F1-macro, which is a harmonic mean of

precision and recall. Our task can be boiled down to the

classification of small-size, sparse, and severely unbalanced

data. To further explore the robustness of our method, we

test the model performance with different proportions of

training data. Table II shows the experimental results of Top-

1 accuracy, Top-5 accuracy and F1-score with 25%, 50%

and 100% of the original dataset for training. We calculate

a measure reduction from using 100% to 25% of the dataset

to reflect the sensitivity of the model to the size of labeled

data. The optimal results are marked in bold. The underlined

values are the suboptimal results.

1) Discussion of Experimental Results for Q1: T-GCN

has a strong ability to capture global word co-occurrence and

document-word information achieving satisfactory results.

Currently, the Web ecosystem has accumulated a wealth of

knowledge (interactions and attributes) that can be utilized

to benefit service classification. I-GCN captures implicit

features of Mashup-API co-invocation patterns using graph

convolutional network, and obtains comparable results. C-

GCN combines description documents with co-invocation

patterns by the single-graph evolution achieving better per-

formance. Our method, called Dual-GCN, combines co-

invocation patterns with description documents by dual-

graph evolution, and obtains best results as shown in Table

II. Compared with C-GCN, our method has achieved at least

5.8%, 1.7% and 5.0% improvement in Top-1 accuracy, Top-

5 accuracy and F1-score metrics when using all training

data. Our proposed method can effectively isolate API

description documents from other entities to prevent word-

level noise propagation. It proves that our proposed dual-

graph evolution method can perform better than single-graph

evolution methods on Web service classification.

2) Discussion of Experimental Results for Q2: In the

conventional machine learning methods, LDA-L-SVM and

KNN achieve better performance. Most deep learning-based

methods do not perform well on small dataset as shown

in the experimental results. Among them, the performances

of CNN, C-LSTM and R-CNN are very close and low.

TA-BiLSTM uses topic vectors to enhance topic attention

processings of Web services, thereby further improving the

classification performance. ServerNet extracts the features of

more regions by stacking 2-CNN and BiLSTM to obtain bet-

ter classification results, better than CNN, C-LSTM, R-CNN

and TA-BiLSTM. T-GCN and I-GCN leverage description

documents and co-invocation patterns respectively achieving
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Table II
TOP-1 ACCURACY, TOP-5 ACCURACY AND F1-MACRO OF OUR METHOD COMPARED WITH VARIOUS REPRESENTATIVE METHODS

Methods
�100% 50% �25% �Sensitivity

Top-1 Top-5 F1 Top-1 Top-5 F1 Top-1 Top-5 F1 Top-1 Top-5 F1

AB 0.3077 0.5265 0.2368 0.2179 0.4726 0.1569 0.1880 0.4145 0.1125 -38.9% -21.3% -52.5%
KNN 0.5598 0.7863 0.5260 0.5043 0.7479 0.4368 0.3761 0.6239 0.2723 -32.8% -20.7% -48.2%
LR 0.4274 0.6923 0.2773 0.3590 0.5769 0.1746 0.2521 0.5214 0.1300 -41.0% -24.7% -53.1%
RF 0.4872 0.7863 0.4436 0.4701 0.7179 0.3748 0.3803 0.6410 0.2637 -21.9% -18.5% -40.6%

LDA-L-SVM 0.5347 0.8413 0.4355 0.4189 0.6888 0.2577 0.3015 0.5343 0.1987 -43.6% -36.5% -54.4%
TS-NB 0.4289 0.6456 0.3034 0.3217 0.5343 0.2161 0.2676 0.4811 0.1798 -37.6% -25.5% -40.7%
CNN 0.3547 0.6376 0.2646 0.2752 0.5068 0.1364 0.1598 0.4060 0.0625 -54.9% -36.3% -76.4%

C-LSTM 0.3393 0.6256 0.2577 0.2692 0.5402 0.1695 0.2385 0.5017 0.1431 -29.7% -19.8% -44.5%
R-CNN 0.4162 0.7000 0.3622 0.3256 0.5855 0.2129 0.2368 0.5265 0.1480 -43.1% -24.8% -59.1%

TA-BiLSTM 0.4397 0.7185 0.3847 0.3477 0.5976 0.2369 0.2573 0.5448 0.1771 -41.5% -24.2% -54.0%
ServerNet 0.4586 0.7369 0.4087 0.3668 0.6139 0.2610 0.2811 0.5531 0.1902 -38.7% -24.9% -53.5%

T-GCN 0.5897 0.8034 0.5755 0.5214 0.7463 0.4565 0.4373 0.6994 0.4003 -25.8% -12.9% -30.4%
I-GCN 0.4402 0.7350 0.3248 0.4274 0.6652 0.2940 0.3632 0.6456 0.2621 -17.5% -12.2% -19.3%

C-GCN-w 0.6111 0.8462 0.5927 0.5556 0.7906 0.5084 0.5128 0.7436 0.4241 -16.1% -12.1% -28.4%
C-GCN-non-w 0.5855 0.8248 0.5774 0.5598 0.8077 0.5007 0.4744 0.7265 0.4208 -19.0% -11.9% -27.1%

Dual-GCN 0.6468 0.8604 0.6222 0.5812 0.8205 0.5605 0.4786 0.7608 0.4621 -26.0% -11.6% -25.7%
Gains +5.8% +1.7% +5.0% +3.8% +1.6% +10.2% -6.7% +2.3% +9.0% - - -

competitive results. C-GCN uses both description documents

and co-invocation patterns in single-graph achieving subop-

timal results. Dual-GCN performs best and outperforms all

representative methods.
3) Discussion of Experimental Results for Q3: From

the Table II, we can clearly see that Dual-GCN obtains

higher Top-1 accuracy, Top-5 accuracy and F1-macro with

limited labeled data. For example, Dual-GCN respectively

obtains test accuracies of 47.86%, 76.08% and 46.21% in

Top-1 accuracy, Top-5 accuracy and F1-macro with only

25% of dataset for training, which is even higher than

some representative methods using 100% of training data.

Some representative methods vary greatly with the size

of the training dataset. On a quarter of the training data,

Top-5 accuracy of Dual-GCN only decreases by 11.6%

compared to using all training dataset, which demonstrates

the robustness of our proposed method.

(a) (b)

Figure 6. Impact of number of convolutional layers and hidden units.

E. Impact of Parameters Settings

1) Impact of the Number of Convolutional Layers: The

number of convolutional layers determines the ability to

capture higher-order features from adjacency entities in the

graph. We study the impact of the number of convolutional

layers l for Web service classification. The number of

Figure 7. Average computational overheads of all methods, where y-axis
is in logarithmic scale.

convolutional layers l ranges from 1 to 4. Figure 6(a)

represents the experimental results of all metrics for Web

service classification. More convolutional layers does not

bring about performance improvement. From the figure, we

can see that the optimal setting of l is 2 in all metrics,

indicating that a 2nd order information propagation in our

constructed graphs is sufficient.

2) Impact of the Number of hidden units: Similar to most

neural networks, the architecture of our model is designed to

follow the tower pattern. In our method, a two-layer GCN,

we set the number of hidden units in the first layer to h and

the number of hidden units in the second layer to h
2 . The

number of hidden units h varies in the set {128, 192, 256,

320, 384, 448, 512}. From Figure 6(b), we can see that the

optimal setting of the number of hidden units is close to 256.

This means that a larger number of hidden units is not always

benefical for the improvement of classification accuracy and

a moderate number of hidden units is sufficient.
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F. Computational Overhead

To investigate the computational overhead of service clas-

sification in all methods, we conduct experiments on a laptop

equipped with i5-8300H CPU, GTX1050Ti GPU and 16-GB

memory. All methods are implemented in Python. From the

average computational overhead of each sample in Figure

7, we can see that our method obtains a competitive time

cost. When compared with C-LSTM, RCNN, TA-BiLSTM

and ServerNet, the time cost is greatly reduced, but the

classification performance is improved.

VI. CONCLUSION AND FUTURE WORK

This paper presented a novel unified and extensible Dual-

Graph Convolutional Network based Web service classifi-

cation framework which can combine functional description

documents and other sources of information (Mashup-API

co- invocation patterns by default in this paper) accumulated

in the Web API ecosystem. Specifically, we defined a dual-

GCN model to extract features of API documents and

Mashup-API co-invocation patterns respectively to prevent

word-level noise propagation. This service classification

framework is flexible and extensible with the ability to

include other useful information (interactions, attributes and

external knowledge) accumulated in Web API ecosystem.

Comprehensive experiments on a real-world public dataset

successfully demonstrated that our method can not only

achieve better service classification accuracy but also have

stronger robustness than various representative methods.

As part of our future work, we will further explore

other elements such as DataFormat, Rating and Protocol
in the Web API ecosystem to enhance the proposed method.

Meanwhile, since the GCN model does not consider the

order of words, we will attempt to introduce sequential

features into our method in the future.
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