
Identifying Crashing Fault Residence Based on
Cross Project Model

Zhou Xua,b, Tao Zhangc, Yifeng Zhanga, Yutian Tangb, Jin Liua,d,*, Xiapu Luob,*, Jacky Keunge, and Xiaohui Cuif

aSchool of Computer Science, Wuhan University, China
bDepartment of Computing, The Hong Kong Polytechnic University, China

cCollege of Computer Science and Technology, Harbin Engineering University, China
dKey Laboratory of Network Assessment Technology, Institute of Information Engineering, Chinese Academy of Sciences, China

eDepartment of Computer Science, City University of Hong Kong, China
fSchool of Cyber Science and Engineering, Wuhan University, China

Abstract—Analyzing the crash reports recorded upon software
crashes is a critical activity for software quality assurance.
Predicting whether or not the fault causing the crash (crashing
fault for short) resides in the stack traces of crash reports
can speed-up the program debugging process and determine
the priority of the debugging efforts. Previous work mostly
collected label information from bug-fixing logs, and extracted
crash features from stack traces and source code to train
classification models for the Identification of Crashing Fault
Residence (ICFR) of newly-submitted crashes. However, labeled
data are not always fully available in real applications. Hence the
classifier training is not always feasible. In this work, we make
the first attempt to develop a cross project ICFR model to address
the data scarcity problem. This is achieved by transferring
the knowledge from external projects to the current project
via utilizing a state-of-the-art Balanced Distribution Adaptation
(BDA) based transfer learning method. BDA not only combines
both marginal distribution and conditional distribution across
projects but also assigns adaptive weights to the two distributions
for better adjusting specific cross project pair. The experiments
on 7 software projects show that BDA is superior to 9 baseline
methods in terms of 6 indicators overall.

Index Terms—crashing fault, stack trace, transfer learning,
cross project model

I. INTRODUCTION

Due to the complex program structure, software products

may well contain faults (or bugs) upon release. The faults

have high risks to activate the software crash. Once a crash is

triggered, the system will automatically generate a crash report

(usually the stack trace) to record the corresponding status

information of the program execution at that time. Fixing the

fault causing the crash (crashing fault for short) is a critical

task for software quality assurance. To achieve this purpose,

developers need to effectively identify the position of the

crashing fault in the source code. This process is called crash

localization (or fault localization) [1].

Generally, crash localization utilizes the information of the

stack trace and the source code to find the root cause of the

crash for debugging. The stack trace is a set of frame objects

that consists of a runtime exception and a list of the function

invocations collected at runtime. If the crashing fault resides
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inside the stack trace, the developers only need to focus on the

source code of the functions recorded in the stack trace. When

the crashing fault resides outside the stack trace, the developers

have to check the function invocation graphs, spending huge

efforts to inspect extensive source code [2]. This will seriously

hinder the efficiency demand of the crash localization.

To facilitate the crash localization, Gu et al. [2] proposed

an automatic method, called CraTer, to predict whether the

crashing fault residence is inside the stack trace or not. We call

this task Identification of Crashing Fault Residence (ICFR).

According to their definition, if the faulty code exactly matches

the record information of one frame in the stack trace, it

is deemed that the crashing fault resides inside the stack

trace, otherwise, outside the stack trace. They extracted a

set of features from the stack trace and the source code

to characterize the crashing fault. However, their work only

focused on ICFR in the within-project scenario, in which the

performance highly relies on the precondition that sufficient

labeled training crash instances are available. As the collection

process of software project data (especially for the label

information) is costly and may need a considerable amount of

time and workload [3]–[5], it is not always feasible to obtain

abundant labeled training data. An alternative solution to this

dilemma is resorting the advantage of the cross project model

which utilizes the labeled data of the external project (a.k.a.
source project) to serve the task of the insufficiently labeled

or unlabeled data of the project at hand (a.k.a. target project).

As far as we know, the study of ICFR in cross project setting

is uninvestigated yet. In this paper, we make the first attempt

on this problem by proposing a cross project ICFR model.

The data distribution discrepancy is the major barrier for

cross project models to achieve satisfactory performance.

Transfer learning is a commonly-used cross project model

which aims to minimize the distribution discrepancy across

different domains (one project represents an unique domain).

In this work, we apply a novel transfer learning method, called

Balanced Distribution Adaptation (BDA) [6], as our cross

project ICFR model. The advantage of BDA is that it not

only considers discrepancies of both marginal and conditional

probability distributions, but also allocates different weights
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to them for effectively adapting to various cross project pairs.

This is motivated by the fact that, if the data distributions

of two projects are similar, the importance of the conditional

probability distribution is dominant, while if the data distri-

bution of two projects is dissimilar, the marginal probability

distribution has higher importance [6].

In addition, since the sizes of different features vary even

in the same project, normalization techniques are essentially

applied to rescale the cross project data into a specific interval

before being fed into a machine learning model. This data

preprocessing procedure is beneficial to the following learning

performance [7]. Previous study showed that the choice of the

normalization techniques and the distribution characteristics

of different domains can greatly impact the performance of

certain learning tasks [8]. To alleviate this issue, Nam et al.

[9] proposed a heuristic strategy to adaptively determine an

appropriate normalization technique based on the distribution

characteristics of the cross project data. However, the impact

of normalization techniques on the ICFR performance has not

been explored yet. In this work, we make the first attempt

to find a better normalization strategy for the ICFR data, and

investigate whether or not the normalization adaption selection

in [9] also works well on our cross project ICFR model.

We conduct experiments on a public dataset collecting from

7 open-source projects, and employ 6 indicators to evaluate the

ICFR performance of our BDA based cross project model.

The detailed results show that BDA achieves 0.104∼0.192

improvements in terms of F-measure for crash instances inside

the stack trace, 0.132∼0.394 improvements in terms of G-

measure, 0.127∼0.334 improvements in terms of g-mean,

0.124∼0.263 improvements in terms of Balance, 0.137∼0.296

improvements in terms of MCC, all over 9 baseline methods.

In addition, ICFR outperforms 7 out of 9 baseline methods in

terms of F-measure for crash instances outside the stack trace.

In summary, we have the following contributions:

(1) In this work, we are among the first to study the ICFR

problem using the cross project model to address the data

scarcity issue in which the labeled data are not always

available for the project at hand.

(2) By leveraging a state-of-the-art BDA method, we al-

leviate the threat of distribution inconsistency between

cross project data to the performance of the cross project

model. BDA is the first transfer learning technique that

incorporates both marginal and conditional distributions

together with adaptive weights.

(3) We comprehensively evaluate the proposed cross project

model on 7 open-source projects with 6 indicators. The

experimental results show the superiority of our devised

cross project ICFR model over 9 baseline methods.

II. RELATED WORK

A. Stack Trace Analysis

Once a crash occurs, an exception is thrown out and a crash

report will be automatically recorded by the crash reporting

system. The main context of the report is the stack trace of the

crash which reports the function invocation sequences during

execution. The stack trace assists in reproducing the crash

scenario, which is helpful in finding the root cause of the crash

[10]. A stack trace can be treated as a set of frame objects. The

initial frame reports the exception of the crash and each other

frame represents a function invocation. The most recent frame

is usually called top frame and the least recent one is usually

called bottom frame [2]. The main elements of each frame

(except for the initial one) consist of the class name, function

name, and the code line number, which denotes the position

of the execution point. Other optional elements include the

argument information that relates to the function.

Previous studies analyzed stack traces for different tasks,

such as crash report clustering [11], [12], crash reproduction

[10], [13]–[15], crash localization [16]–[18], etc. Among these

studies, crash localization is the most similar to our work.

Crash localization (or fault localization) recommends the

developers a set of candidate functions based on their suspi-

cious scores being faulty by analyzing the stack traces and

source code. Schröter et al. [19] showed the strong evidence

that stack traces are helpful for bug fixing as their initial results

revealed that the faulty function is typically located in the top

10 stack frames. Wu et al. [16] proposed the CrashLocator

method employing 3 static analysis techniques to deduce the

failing execution stack traces and a term weighting method

to calculate the suspicious scores for the functions. Wang et

al. [20] proposed 3 crash correlation rules to divide the crash

types into different groups and a new fault localization method

based on the divided groups. Moreno et al. [17] proposed the

Lobster method based on the structural and textual similarities.

Wong et al. [18] developed a tool, called BRTracer, by analyz-

ing the segmentation of the source code and stack traces for

bug reports based fault localization. Jiang et al. [21] proposed

a null pointer exception based fault localization method by

analyzing the stack-trace-driven program slicing.

Different from the above fault localization studies which

return the potential faulty functions to the developers, Gu

et al. [2] proposed the CraTer method to determine whether

the location of the faulty code is consistent with the record

(including the class name, function name, and code line

number) of one frame in the stack trace. From the point of

view, the work of Gu et al. can be viewed as a fine-grained

identification at the code line level rather than the function

level. Since Gu et al. [2] only considered ICFR in the same

project setting, in this work, we extend their work to cross

project setting since the labeled data are usually scarce in

single project case.

B. Cross Project Learning Task

Though there are no studies for cross project ICFR yet,

researchers have applied cross project models to other software

engineering tasks, such as defect prediction, effort estimation,

change prediction, logging prediction, etc.

Cross project defect (or fault) prediction utilizes the fault

data of the external project (a.k.a. source project) to predict

whether the software entities (a function, class, or file) in
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the target project are fault-prone. Prior studies have proposed

different cross project models for this task, such as instance

filtering based methods [22]–[25], transfer learning based

methods [8], [9], [26], [27], and classifier combination based

methods [28]–[31]. The studies of cross project fault prediction

compose the most active research branch in software engineer-

ing field [32], [33].

Cross project effort estimation [34]–[39] estimates the effort

required to develop a target project with the aid of the labeled

data from other projects. Cross project change prediction [40]–

[43] determines whether a class in a target project is likely

to change in its next release with the help of the labeled data

from other projects. Cross project logging prediction [44]–[46]

employs the labeled data from other projects to automatically

predict the code constructs that need to be logged in the target

project. Different from the above studies, in this work, we

make the first attempt to develop a transfer learning based

cross project model for ICFR task.

III. OUR METHOD

A. Notations

For source and target project data, we assume that the source

project has plenty of labeled crash instances while the target

project only has unlabeled crash instances. Specifically, the

source project DS contains a feature matrix XS = xi
s|ns

i=1 ∈
R

ns×ds and a label matrix YS = yis|ns
i=1 ∈ R

ns×1, where

xi
s represents the i-th crash instance in XS , yis represents

the corresponding label, ds and ns represent the number of

features and crash instances, individually. yis is ‘InTrace’ if

xi
s exactly matches one of the frame records in the stack

trace, otherwise ‘OutTrace’. Similarly, the target project DT

contains a feature matrix XT = xi
t|nt
i=1 ∈ R

nt×dt , where xi
t

represents the i-th crash instance in XT , dt and nt represent

the number of features and crash instances, respectively. The

corresponding label vector YT = yit|nt
i=1 is what we are seeking

for. Assume Xs (Xt) and Ys (Yt) represent the feature space

and label space of the source (target) project, respectively.

In the context of cross project ICFR, Xs = Xt and Ys = Yt,

which means that the two projects have the same feature

space and label space respectively, but P(xs) �= P(xt) and

P(ys|xs) �= P(yt|xt), which means that the two projects

have different marginal distribution and conditional distribu-

tion respectively. The goal of BDA is to learn a common

feature space in which the two distribution differences, i.e.,

d(P(xs),P(xt)) and d(P(ys|xs),P(yt|xt)), are minimal.

B. Balanced Distribution Adaptation (BDA)

The simplest way to reduce the discrepancy between DS

and DT is to optimize the two distribution differences with

the same weight as follows:

d(DS ,DT ) = d(P(xs),P(xt)) + d(P(ys|xs),P(yt|xt)). (1)

For two data sets, the margin distribution is more important

when they are dissimilar, otherwise the conditional distribution

should be emphasized [6]. Thus just combining the two terms

with the same weight in Eq.1 could not well adapt to all cross

project data. BDA alleviates this issue by assigning adaptive

weights to the two terms for different cross project pairs. It is

formulated as follows:

d(DS ,DT ) = (1− μ)d(P(xs),P(xt)) + μd(P(ys|xs),P(yt|xt)), (2)

where μ ∈ [0, 1] measures the importance of the two terms.

μ > 0.5 (μ < 0.5) means that the conditional (marginal)

distribution is more important.

However, the label set of the target project YT is unknown

beforehand, thus the term P(yt|xt) could be calculated. Long

et al. [47] suggested to use class conditional distribution

P(xt|yt) to replace conditional distribution as long as that data

samples are sufficient. The alternative term can be calculated

by training a classifier on DS and predicting on DT . It is worth

noting that, since the initial outputs may be not reliable, these

output labels are iteratively refined until they are stabilized.

By using the Maximum Mean Discrepancy (MMD) method

[48] to calculate the two terms, i.e., d(P(xs),P(xt)) and

d(P(xs|ys),P(xt|yt)), Eq. 2 is rewritten as

d(DS ,DT ) = (1− μ)

∣∣∣∣∣
∣∣∣∣∣ 1

ns

ns∑
i=1

xi
s −

1

nt

nt∑
j=1

xj
t

∣∣∣∣∣
∣∣∣∣∣
2

H

+ μ

C∑
c=1

∣∣∣∣∣
∣∣∣∣∣ 1

nc
s

∑
xi
s∈D(c)

S

xi
s −

1

nc
t

∑
x
j
t∈D(c)

T

xj
t

∣∣∣∣∣
∣∣∣∣∣
2

H
,

(3)

where H represents the reproducing kernel Hilbert space, C

represent the number of distinct labels, D(c)
S (D(c)

T ) represents

the crash instances with label c in source (target) project, nc
s

(nc
t ) represents the number of crash instances in D(c)

S (D(c)
T ).

By using the matrix tricks and regularization, Eq. 3 is

converted to

min
A

tr
(
A�X

(
(1− μ)M0 + μ

C∑
c=1

Mc

)
X�A

)
+ λ‖A‖2F

s.t. A�XHX�A = I, 0 ≤ μ ≤ 1,

(4)

where the first term adapts the weights of the two distribu-

tions, and the second term is a regularization term. The two

constraint terms are used to maintain the inner structure prop-

erties of the original data for the transformed one A�X and

controls the μ value, respectively. In addition, X represents

the input feature matrix combining XS and XT , A represents

a transformation matrix, I represents identity matrix with size

(ns+nt)× (ns+nt), H = I− (1/n)1 represents a centering

matrix, and ‖A‖2F represents the Frobenius norm of A. M0

and Mc represent MMD matrices as follows:

(M0)ij =

⎧⎪⎪⎨
⎪⎪⎩

1
n2
s
, xi, xj ∈ DS

1
n2
t
, xi, xj ∈ DT

− 1
nsnt

, otherwise,

(5)

(Mc)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
nc
s
2 , xi, xj ∈ D(c)

S

1
nc
t
2 , xi, xj ∈ D(c)

T

− 1
nc
sn

c
t
,

{
xi ∈ D(c)

S , xj ∈ D(c)
T

xi ∈ D(c)
T , xj ∈ D(c)

S

0, otherwise.

(6)
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Fig. 1: An example of the feature transformation effect by BDA.

By using the Lagrange multiplier method [49], the Lagrange

function of Eq. 4 is

L =tr
(
A�X

(
(1− μ)M0 + μ

C∑
c=1

Mc

)
X�A

)
+ λ‖A‖2F + tr((I −A�XHX�A)Φ),

(7)

where Φ = (φ1, ..., φd) represents the Lagrange multiplier. By

setting the first-order derivative of L towards A to 0, Eq. 7 is

converted to a generalized eigen-decomposition problem as

(
X

(
(1− μ)M0 + μ

C∑
c=1

Mc

)
X� + λI

)
A = XHX�AΦ. (8)

The result of Eq. 8 is the transformation matrix A, which

is used to convert the original data of the two projects.

We provide an example of simulated data to illustrate the

feature transformation effect of the BDA method. For the

source project, we generate 130 crash instances outside the

stack trace (red circles) from a mixture of Gaussian with

means (2, 3.5), and 50 crash instances inside the stack trace

(green circle) from a mixture of Gaussian with means (6.5,

2.5), as showed in Figure 1(a). To reflect the distribution

differences across projects, for the target project, we generate

120 crash instances outside the stack trace (red pentagrams)

from a mixture of Gaussian with means (4, 5.5), and 60

crash instances inside the stack trace (blue pentagrams) from

a mixture of Gaussian with means (6, 1), as showed in Figure

1(b). Figures 1(c) depicts the mapped data of two projects by

BDA method with the equal weight in the common feature

space. From Figure 1, we observe that the new data of the

two projects mainly locate in two regions marked with black

rectangles in the embedding feature space, which reduces the

data distribution differences between the two projects.

After obtaining the mapped data of the two projects, we use

the same logistic regression model in [9] as our basic classifier

to conduct the ICFR task.

IV. EXPERIMENTAL SETUP

Figure 2 provides an overview of the framework of this

study. Below, we discuss the design components including the

benchmark dataset and performance indicators.

A. Data Collection

In this work, we employ a publicly available benchmark

dataset denoted by Gu et al. [2] to evaluate our proposed

Crash Instances

Source project 
with labels

Crash Instances

Target project 
without labels

D
ata Preprocessing

BDA

Crash Instances

Mapped Source 
project 

Crash Instances

Mapped Target 
project

Classification 
Model

Performance 
Results

Fig. 2: An overview diagram of the experiment framework.

cross project ICFR model. The benchmark dataset is collected

from 7 open source Java projects: Apache Commons Codec,

Apache Commons Collections, Apache Commons IO, Jsoup,

JSqlParser, Mango, and Ormlite-Core. Table I describes

the basic statistics of the 7 projects, including the version

number, the total number of generated mutants (# Mutants), the

number of remained crashes after removing useless mutants (#

Crashes), the number of crash instances inside (# InTrace)

and outside (# OutTrace) the stack trace, and the ratio of
#OutTrace
#InTrace . The data collection consists of 3 main steps:

crash generation, crashing fault residence labeling and feature

extraction. We briefly describe each step as follows:

TABLE I: Statistic Information of the 7 Projects

Project Version # Mutants # Crashes # InTrace # OutTrace Ratio

Codec 1.1 2901 610 177 433 2.45

Collections 4.1 6650 1350 273 1077 3.95

IO 2.5 3337 686 149 537 3.60

Jsoup 1.11.1 2657 601 120 481 4.01

JSqlParser 0.9.7 8757 647 61 586 9.61

Mango 1.5.4 5149 733 53 680 12.83

Ormlite-Core 5.1 3563 1303 326 977 3.00

1) Crash Generation:
(1) Fault Generation via Program Mutation

Since it is a non-trivial activity to reproduce the real-world

crashes, Gu et al. [2] simulated the crashes by seeding faults

into the real-world projects. More specifically, they applied a
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state-of-the-art mutation testing tool, the PIT system1, to gen-

erate single-point mutations. In other words, a small change

is made to the source code to form a program mutant in each

round. These mutations are derived from 7 default mutation

operators2 in the PIT system, including conditionals boundary

mutator, increments mutator, invert negatives mutator, math

mutator, negate conditionals mutator, return values mutator,

and void method call mutator.

(2) Removing Mutants Causing No Crash

After obtaining these program mutants, 4 rules were em-

ployed to remove some program mutants which do not crash

the program. The rules include removing the mutants that pass

all test cases, the mutants whose stack traces only contain

AssertionFailedError, ComparisonFailure, or test cases.

2) Crashing Fault Residence Labeling: The 3 main terms

recorded in the frame, including class name, function name

and line number, are used to label each crash instance. More

specifically, if the information of the faulty code exactly

matches the 3 terms in one frame, then the residence of

the crash instance is deemed as within the stack trace and

labeled as ‘InTrace’, otherwise labeled as ‘OutTrace’. The

label information is collected by checking the bug-fixing logs

from mutation testing.

3) Feature Extraction: In order to character each crash

instance (i.e., crashing fault), Gu et al. [2] extracted 89 features

in total from the stack trace and the relevant source code.

These features come from 5 families as follows:

• 11 features based on the stack trace (marking from ST01

to ST11 for simplicity). These features represent the

difficulty of handling the corresponding crash.

• 23 features based on the function and class in the top

frame (marking from CT01 to CT23). As the position in

which the exception is thrown is located in the top frame,

the features of the function and class in the top frame can

characterize the program state when it encounters a crash.

• 23 features based on the function and class in the bottom

frame (marking from CB01 to CB23). As the information

of initial function call is recorded in the bottom frame,

the feature of the function and class in the bottom frame

can also characterize the crashing fault.

• 16 features by normalizing CT08∼CT23 with LOC

(marking from AT01 to AT16).

• 16 features by normalizing CB08∼CB23 with LOC

(marking from AB01 to AB16).

Their brief descriptions are summarized in Table II.

B. Performance Indicator

As the goal of ICFR is to determine the label of a crash

instance as ‘InTrace’ or ‘OutTrace’, it is a typical binary

classification problem. There are 4 outputs for the ICFR task:

• a crash with labeled t (t is ‘InTrace’ or ‘OutTrace’) is

predicted as t,

1http://pitest.org/
2http://pitest.org/quickstart/mutators/#INCREMENTS

• a crash with labeled t is predicted as t̂ (t̂ is the opposite

of t),
• a crash with labeled t̂ is predicted as t̂,
• a crash with labeled t̂ is predicted as t

The numbers of crash instances that with the above 4

outputs are called True Positive (TP(t)), False Negative

(FN(t)), True Negative (TN(t)), and False Positive (FP(t)),

respectively. First, we give the definitions of 3 basic terms,

i.e., Precision, Probability of Detection (PD or Recall), and

Probability of False alarm (PF).

Precision measures the ratio of crashes with label t that

are correctly predicted to the total number of crashed that

are predicted as t, i.e., Precision(t) = TP(t)
TP(t)+FP(t) . PD or

Recall measures the ratio of the crashes with label t that are

correctly predicted to the total number of crashes with label t,
i.e., PD(t) = Recall(t) = TP(t)

TP(t)+FN(t) . PF measures the ratio

of the crash with label t that are incorrectly predicted to the

total number of crash with label t, i.e., PF(t) = FP(t)
FP(t)+TN(t) .

F-measure is the harmonic mean of Precision and Recall as

F-measure(t) =
2× Precision(t)× Recall(t)

Precision(t) + Recall(t)
(9)

G-measure is the harmonic mean of PD and (1-PF) as

G-measure(t) =
2× PD(t)× (1− PF(t))

PD(t) + (1− PF(t))
(10)

g-mean is the geometric mean of PD and (1-PF) as

g-mean(t) =
√

PD(t)× (1− PF(t)) (11)

Balance is a trade-off between Recall and PF as

1−
√

(0− PF(t))2 + (1− Recall(t))2

2
(12)

MCC is a correlation coefficient considering TP, TN, FP,
and FN, which is defined as (omitting (t) for the 4 terms)

MCC(t) =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(13)

In this study, we employ F-measure, G-measure, g-mean,

Balance, and MCC as performance indicators. F-measure, G-

measure, g-mean, and Balance range from 0 to 1, and MCC

ranges from -1 to 1. Larger indicator value means better ICFR

performance. In ICFR scenario, both the crashes with label ‘In-

Trace’ and ‘OutTrace’ can be treated as the positive instances.

Thus for each indicator, we need to calculate two performance

values which correspond to the crash with different labels.

It is worth noting that, except for F-measure, the other 4

indicator values on two labels are the same. This means that

the 4 indicators can be used to comprehensively evaluate the

overall performance of the method on the two labels. Thus, we

total have 6 indicators in which the two F-measure indicator

are called F-measure (InTrace) and F-measure (OutTrace). In

addition, we report the results of Precision, Recall and AUC

in our online supplementary materials3.

3https://sites.google.com/view/icfr/
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TABLE II: Brief Descriptions of 89 Features for Crash Instances

Feature Description Feature Description

Feature Set CT and CB Features related to the top frame CT (bottom frame CB) Feature Set ST Features related to the stack trace (short for ST)

CT01 (CB01)

in top (bottom) class

Number of local variables ST01 Type of the exception in the crash

CT02 (CB02) Number of fileds number ST02 Number of frames of the ST

CT03 (CB03) Function (except constructor one) number ST03 Number of classes of the ST

CT04 (CB04) Imported packages number ST04 Number of functions of the ST

CT05 (CB05) Whether the class is inherited from others ST05 Whether an overloaded function exists in ST

CT06 (CB06) LoC of comments ST06 Length of the name in the top class

CT07 (CB07)

in top (bottom) function

LoC ST07 Length of the name in the top function

CT08 (CB08) Number of parameters ST08 Length of the name in the bottom class

CT09 (CB09) Number of local variable ST09 Length of the name in the bottom function

CT10 (CB10) Number of if-statements ST10 Number of Java files in the project

CT11 (CB11) Number of loops ST11 Number of classes in the project

CT12 (CB12) Number of for statements Feature Set AT Features normalized by LoC

CT13 (CB13) Number of for-each statement AT01 (AB01) CT08/CT07 (CB08/CB07)

CT14 (CB14) Number of while statements AT02 (AB02) CT09/CT07 (CB09/CB07)

CT15 (CB15) Number of do-while statements AT03 (AB03) CT10/CT07 (CB10/CB07)

CT16 (CB16) Number of try blocks AT04 (AB04) CT11/CT07 (CB11/CB07)

CT17 (CB17) Number of catch block AT05 (AB05) CT12/CT07 (CB12/CB07)

CT18 (CB18) Number of finally blocks AT06 (AB06) CT13/CT07 (CB13/CB07)

CT19 (CB19) Number of assigment statements AT07 (AB07) CT14/CT07 (CB14/CB07)

CT20 (CB20) Number of function calls AT08 (AB08) CT15/CT07 (CB15/CB07)

CT21 (CB21) Number of return statements AT09 (AB09) CT16/CT07 (CB16/CB07)

CT22 (CB22) Number of unary operators ... ...

CT23 (CB23) Number of binary operators AT16 (AB16) CT23/CT07 (CB23/CB07)

C. Parameter Settings

For BDA, the factor μ in Eq. 8 is a project-specific parame-

ter and relates to the similarity degree of the data distributions

across projects. However, no effective methods are available

to specify it on distinct cross project pairs [6]. In this work,

we set 11 μ values, from 0 to 1 with a step of 0.1 and search

its optimum option. In addition, we set parameter λ in Eq. 8

as 0.1. The discussion of the impacts of parameter λ values

on the BDA performance, the experimental scripts, and the

benchmark dataset are available in our online materials.

D. Statistic Test

To statistically analyze the significant differences among

our method BDA and the baseline methods, we employ a

typical non-parametric test, i.e., Friedman test (significant

level at 95%) with post-hoc Nemenyi test [50]. Friedman test

detects whether there exist statistically significant differences

among multiple methods. When Friedman test reports a p-

value lower than 0.05, the differences are considered to be

significant, otherwise not. If the significant differences exist,

Nemenyi test is used to find the method groups that differ with

each other. Due to the drawback of traditional Nemenyi test

which would generate overlapping groups, in this work, we

employ its improved version in [32] to divide the methods into

completely nonoverlapping groups. The improved Nemenyi

test is employed in previous studies [51], [52].

V. EXPERIMENTAL RESULTS

A. RQ1:How different data normalization strategies impact
the performance of BDA?

Motivation: Nam et al. [9] have stated that different data nor-

malization methods can impact the performance of the cross

project model for the defect prediction task. They proposed

an adaption selection strategy to select the appropriate nor-

malization technique to transform the data before performing

the cross project model. The behind rationale is based on the

similarity of the data characteristics (such as the mean, median,

min and max values) between the source and target project

data. This question is designed to investigate whether or not

our cross project ICFR model is sensitive to different data

normalization methods and to find the most suitable one for

our data preprocessing.

Method: We employ total 6 normalization techniques in [9]

to answer this question. These techniques are derived from

2 widely-used data normalization techniques, i.e., min-max

normalization and the z-score normalization. For each feature

vector x = {x1, x2, ..., xm} in the given data, in terms of min-

max normalization, xi =
xi−min(x)

max(x)−min(x) , where min(x) and

max(x) represent the minimum and maximum values of the

feature vector x respectively, xi and xi are the original and

normalized i-th valued of the feature vector x respectively.

In terms of z-score normalization, xi = xi−mean(x)
std(x) , where

mean(x) and std(x) represent the mean value and standard

deviation of the feature vector x, respectively. First, we

describe the 6 normalization techniques as follows:

N0: Do not use any normalization on the original data.

N1: Applying min-max normalization to each project.

N2: Applying z-score normalization to each project.

N3: Applying z-score normalization to each project with the

mean value and standard deviation from the source project.

N4: Applying z-score normalization to each project with the

mean value and standard deviation from the target project.

The sixth one is called Normalization Adaption Selection

(NAS) technique that utilizes a heuristic strategy to select the

optimum normalization option from the above 5 techniques.

This heuristic strategy is based on the elements of a Data
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Characteristic Vector (DCV) which measures the similarity

of the data characteristic between two projects. To calculate

DCV, we first need to calculate a Distance Set (DS) whose

elements are the Euclidean distances of all pairs of the

crash instances among the data, i.e., DS = {dij |∀i, j :
1 ≤ i < n, i < j ≤ n}, where dij represents the

Euclidean distance between the i-th and the j-th instance.

Then DCV = {DS mean,DS median,DS min,DS max,

DS std, num}, in which the 6 entries are the mean value,

the median value, the minimum value, the maximum value,

the standard deviation of DS, and the number of instances,

respectively. As a result, the source project and the target

project individually have one DCV , represented by DCVS

and DCVT , respectively. The similarity of the source project

and the target project is measured by the similarity degree of

the element in DCVS and DCVT using the formulation in

Table III in which [e] is a element in DCV . The similarity

degree ranges from “Much More” (marked as 1) to “Much

Less” (marked as 7). “Much More” means the data character-

istics of the two projects are very different and the element

in DCVT is larger than that in DCVS , while “Much Less”

also means the data characteristics of the two projects are

very different but the element in DCVS is larger than that

in DCVT . For example, given a element in DCV (such as

the median value), if DCVS [median] and DCVT [median]
satisfy the third formulation in Table III, it means that the

source project and the target project are slightly different in

terms of median value and DCVS [median] is smaller than

DCVT [median]. Here, we define a Similarity Vector (SV) to

represent the similarity degree of different elements in DCV .

In the above example, SV [DS median] is equal to 3.

TABLE III: Conditions for Similarity Measure

Degree Condition

Much More (1) DCV S[e] ∗ 1.6 < DCV T [e]

More (2) DCV S[e] ∗ 1.3 < DCV T [e] ≤ DCV S[e] ∗ 1.6
Slightly More (3) DCV S[e] ∗ 1.1 < DCV T [e] ≤ DCV S[e] ∗ 1.3

Same (4) DCV S[e] ∗ 0.9 < DCV T [e] ≤ DCV S[e] ∗ 1.1
Slightly Less (5) DCV S[e] ∗ 0.7 < DCV T [e] ≤ DCV S[e] ∗ 0.9

Less (6) DCV S[e] ∗ 0.4 < DCV T [e] ≤ DCV S[e] ∗ 0.7
Much Less (7) DCV T [e] < DCV S[e] ∗ 0.4

After obtaining these similarity degrees, NAS technique

uses the following heuristic rules to select the final normal-

ization option which is applied to the data of the two projects

before conducting our cross project ICFR model.
Rule 1: If SV [DS mean] and SV [DS std] are individu-

ally with degree 4, we use option N0 on both projects.
Rule 2: If SV [DS min], SV [DS max] and SV [num]

are individually either with degree 1 or 7, then we use

normalization option N1 on both projects.
Rule 3: If SV [DS std] is with degree 1 and SV [num]

is with degree larger than 4 or SV [DS std] is with degree

7 and SV [num] is with degree smaller than 4, then we use

normalization option N3 on both projects.

Rule 4: If SV [DS std] is with degree 1 and SV [num] is

with degree smaller than 4 or SV [DS std] is with degree

7 and SV [num] is with degree larger than 4, then we use

normalization option N4 on both projects.

Rule 5: If none of the above 4 rules are satisfied, then we

use normalization option N2 on both projects.

Results: Figure 3 shows the box-plots of the 6 indicator values

for our cross project ICFR model BDA with the 6 data nor-

malization techniques. From the figure, we observe that BDA

with normalization techniques N0 and N1 achieve the worst

performance in terms of F-measure (InTrace), G-measure, g-

mean, Balance, and MCC on nearly all cross project pairs,

but gets the best median F-measure (OutTrace). It means

that BDA with these two normalization techniques identify

the residences of all the crashing faults as label ‘OutTrace’.

Thus, they make no sense for ICFR task even although they

obtain the best F-measure (OutTrace). For N2, N3, N4, NAS

options, BDA with N2 achieves the higher median F-measure

(InTrace), G-measure, g-mean, Balance, and MCC values

than BDA with other 3 options, while the median F-measure

(OutTrace) by BDA with N2 is only lower than that with N3.

Thus, overall, normalization technique N2 is more suitable

than the others. This conclusion is somewhat inconsistent with

that in [9] which suggested that normalization technique NAS

is the most suitable choice. In this work, we normalize the

cross project data with the N2 option before conducting the

BDA method.

B. RQ2:Does BDA perform better than the variant methods
of its downgraded versions?

Motivation: As BDA incorporates both the marginal and

conditional distributions during the feature embedding process

and assigns different weights to the two distributions for

distinct cross project pairs, this question is designed to study

whether BDA is superior to its variant methods which only

consider one of the distribution or joint the two distributions

with equal weights.

Method: To answer this question, we employ a basic method

(called “None”) and 3 downgraded versions of BDA for

comparison, including TCA [48], CDT, and JDA [47]. “None”

does not involve any feature transformation. TCA only focuses

on the margin distribution. JDA considers two distributions

with the same weight. CDT is proposed by us which only

concerns about the conditional distribution. In this study, we

also combine N2 option with all baseline methods for fair

comparison.

Results: The detailed results for the baseline methods are

available in our online supplementary materials. Figure 4

depicts the box-plots of the 6 indicators for the 5 methods.

Figure 5 visualizes the statistical results (i.e., the CD diagrams)

of post-hoc test by Nemenyi test after Friedman test on each

indicator. The term CD in the upper left corner of each sub-

figure denotes the critical difference of the Nemenyi test, and

the upper right corner shows the p value of the Friedman test.

From Figures 4 and 5, we have the following findings:
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(a) F-measure (InTrace) (b) F-measure (OutTrace) (c) G-measure

(d) g-mean (e) Balance (f) MCC

Fig. 3: Box-plots of the 6 indicator values for BDA with 6 data normalization techniques.

(a) F-measure (InTrace) (b) F-measure (OutTrace) (c) G-measure

(d) g-mean (e) Balance (f) MCC

Fig. 4: Box-plots of the 6 indicator values for for BDA, its 3 variant methods and a most basic method.

(a) Statistical result on F-measure (InTrace) (b) Statistical result on F-measure (OutTrace) (c) Statistical result on G-measure

(d) Statistical result on g-mean (e) Statistical result on Balance (f) Statistical result on MCC

Fig. 5: Comparison of average ranks of BDA and the 4 baselines methods with Nemenyi test in terms of the 6 indicators.

Methods that are significantly different are distinguished with different color.

Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 02:00:45 UTC from IEEE Xplore.  Restrictions apply. 



First, From Figure 4, it can be seen that BDA achieves

the best median performance compared with the 4 baseline

methods in terms of all indicators. More specifically, the

superiority of median performance by BDA is obviously

greater than those by None and TCA in all indicators. Whereas

the superiority of median F-measure (OutTrace) by BDA is

slight when compared with that by CDT and JDT.

Second, the basic method None is outperformed by CDT,

JDT, and BDA, while is only slightly better than TCA. This

means that using transfer learning methods is necessary to

improve the cross project ICFR performance, but only con-

sidering the margin distribution has no positive effects. When

comparing with CDT and JDT, they achieve nearly the same

median indicator values in terms of 5 out of 6 indicators except

for F-measure (InTrace). It means that using the same weight

to combine the two distributions can not achieve better ICFR

performance than only considering the conditional distribution.

Third, the p values in the sub-figures of Figure 5 show

that there exist statistically significant differences among the 5

methods in terms of all indicators. The CD diagrams illustrate

that our cross project ICFR model BDA performs significantly

better than the 4 baseline methods in terms of all indicators.

In addition, the CD diagrams also show that the average rank

of JDT is higher than that of CDT in terms of all indicators,

but with the same blue color. It means that considering both

margin and conditional distribution is helpful to achieve better

ICFR performance, but the differences are not significant

compared with considering only the conditional distribution.

C. RQ3:Is BDA superior to the other cross project models?

Motivation: To the best of our knowledge, this is the first

work to utilize the cross project model for ICFR task. Thus,

we could not find the baseline methods tailored for ICFR to

evaluate the effectiveness of our cross project ICFR model

BDA. In this work, we select some cross project models for

other learning tasks as our baseline methods.

Method: We choose total 9 cross project models that are

originally designed for software fault prediction task as our

baseline methods, including 4 instance filtering based models:

NN-Filter [22], Peter-Filter [23], Yu-Filter [24], and HISNN

[53]; 2 transfer learning based models: TCA+ [9] and TNB

[26]; one feature selection based model: FeSCH [54]; and 2

classifier combination based models: CODEP [28] and ASCI

[29].

Results: Figure 6 depicts the box-plots of the 6 indicators for

the whole 10 models. Figure 7 visualizes the corresponding

statistical results on each indicator. From Figure 6 and 7, we

have the following observations:

First, Figure 6 depicts that BDA achieves the best median

performance compared with the 9 baseline methods in terms

of 5 indicators expect for F-measure (OutTrace). More specif-

ically, the median performance by BDA is obviously superior

to that by the 9 methods in the 5 indicators. Whereas BDA

is outperformed by two classifier combination based cross

project models in terms of F-measure (OutTrace).

Second, among the 4 instance filtering based cross project

models, Yu-Filter obtains the highest median performance

in terms of 5 indicators and the similar median F-measure

(InTrace) to NN-Filter and Peter-Filter, while HISNN performs

the worst in all indicators. Among the 2 transfer learning based

cross project models, TCA+ and TNB achieve the similar

median performance on 2 F-measure indicators while TCA+

achieves much better median performance on other 4 com-

prehensive indicators. Among the 2 classification combination

based cross project models, they obtain the similar median

performance on all 6 indicators.

Third, the p values in Figure 7 show that the 10 methods

have significant differences in terms of all indicators. The CD

diagrams illustrate that our method BDA performs significant

better than the 9 baseline methods in terms of 5 indicators

expect for F-measure (OutTrace), whereas BDA has no sig-

nificant differences compared with CODEP and ASCI in terms

of F-measure (OutTrace).

VI. DIACUSSION

In this section, we give some implications derived from our

experimental results.

From the RQ1, we observe that applying z-score technique

to the cross project data individually (i.e., the N2 option) is

sufficient to achieve better ICFR performance. Thus, we do

not need to utilize the intricate rules to select the optimal

normalization technique (i.e., the NAS option) for specific

cross project pair over our benchmark dataset. The results

of RQ2 show that considering both distributions in transfer

learning with distinct weights is more effective to promote the

cross project ICFR performance than the methods using equal

weights or only considering one distribution. This denotes

that the similarity degrees indeed vary towards different cross

project pairs and the two probability distributions of the

cross project data should be treated differently. From RQ3,

we observe that BDA shows obvious superiority towards the

typical cross project models designed for other learning tasks

overall. This means that the BDA is more suitable for our

cross project ICFR task. But there is still improvement room

for F-measure (OutTrace) performance of BDA since it is not

always the best.

VII. THREATS TO VALIDITY

A. External Validity

We conduct experiments on a benchmark dataset that has

been released recently. Since all the employed 7 projects are

developed with Java language, future studies are necessary

to investigate whether our results can be generalized to the

projects developed with other languages. In addition, the

dataset is collected via imitating the crashes caused by the

seeded faults using program mutation operations. Since such

simulative crashes could not fully reflect the real ones in

practical scenarios, thus, experiments on real-world crashes

are needed to extend the generalization of our results.
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(a) F-measure (InTrace) (b) F-measure (OutTrace) (c) G-measure

(d) g-mean (e) Balance (f) MCC

Fig. 6: Box-plots of the 6 indicator values for BDA nd 9 baseline cross project models.

(a) Statistical result on F-measure (InTrace) (b) Statistical result on F-measure (OutTrace) (c) Statistical result on G-measure

(d) Statistical result on g-mean (e) Statistical result on Balance (f) Statistical result on MCC

Fig. 7: Comparison of average ranks of 10 cross project models with Nemenyi’s post hoc test in terms of the 6 indicators.

B. Internal Validity

The internal validity is threatened by the re-implementation

of the baseline methods. Since the source code of most

cross project models used in our experiment comparison is

not provided by the authors, we carefully implement them

following their details described in the corresponding studies

to minimize the potential faults. We make our source code

and benchmark dataset online, which allows further studies to

replicate our experiments and confirm our results.

C. Construct Validity

As single performance evaluation could potentially threaten

the construct validity, in this work, we employ 6 indicators as

performance measurements, which enables us to have a more

comprehensive evaluation on the effectiveness of our method.

In addition, we employ an improved statistic test to analyze

the results, which makes our evaluation more convincing.

VIII. CONCLUSION

To resolve the dilemma of label shortage for ICFR task, we

propose a BDA based cross project ICRF model by leveraging

the labeled data of other projects to carry out the learning

task on the unlabeled target project data. BDA reduces the

marginal and conditional distribution discrepancies between

the cross project data simultaneously by assigning them with

different weights based on the data distribution similarity of

the two projects. Experiments on 7 open-source Java projects

show that our cross project model BDA achieves better ICFR

performance than the baseline methods on 6 indicators overall.

In future, we plan to explore a feasible way to automatically

specify the weights for the two distributions and investigate the

impacts of the class imbalance on the performance of BDA.
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