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Abstract Indoor tracking systems have become very

popular, wherein pedestrian movement is analyzed in a

variety of commercial and secure spaces. The inertial

sensor-based method makes great contributions to contin-

uous and seamless indoor pedestrian tracking. However,

such a system is vulnerable to the cumulative locating

errors when moving distance increases. Inaccurate heading

values caused by the interference of body swing of natural

walking and the geomagnetic disturbances are the main

sources of the accumulative errors. To reduce such errors,

additional infrastructure or highly accurate sensors have

been used by previous works that considerably raise the

complexity of the architecture. This paper presents an

indoor pedestrian tracking system called WTrack, using

only geomagnetic sensors and acceleration sensors that are

commonly carried by smartphones. A fine-grained walk

pattern of indoor pedestrians is modeled through Hidden

Markov Model. With this model, WTrack can track indoor

pedestrians by continuously recognizing the pre-defined

pedestrians’ walk pattern. More importantly, WTrack is

able to resist both the interference of body swing of natural

walking and the geomagnetic disturbances of nearby

objects. Our experimental results reveal that the location

error is \2 m, which is considered adequate for indoor

location-based-service applications. The adaptive sample

rate adjustment mode further reduces the energy con-

sumption by 52 % in comparison, as opposed to the con-

stant sampling mode.

Keywords Indoor pedestrian tracking � Walk pattern

recognition � Smartphone � Inertial sensing �
Ubiquitous computing

1 Introduction

Indoor pedestrian tracking is an important enabling tech-

nology in many indoor establishments, such as restaurants,

supermarkets, and parking lots. In such environments, it is

very important to collect pedestrians’ tracking information

for physical behavior analysis that has many QoS, traffic

estimation, and security applications [1]. With the wide-

spread use of smartphones, indoor pedestrian tracking

system using the sensors available on the smartphone has

seen a lot of research interest in recent years [2, 3].

Indoor pedestrian tracking technologies can be classified

into two general methods: location fingerprinting-based

method [4, 5] and inertial sensor-based approach [6, 7].
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Location fingerprinting-based tracking technologies cover

a large range and possess higher precision, which are

suitable for long-time positioning. However, it is unable to

realize continuous and seamless tracking due to the prob-

lem of blind spots in coverage. Additionally, the finger-

printing scheme requires a costly process of radio map

construction based on AP infrastructure. Inertial sensors

positioning is widely used to track a pedestrian by con-

tinuously estimating displacement from an unknown loca-

tion [8]. The so-called pedestrian navigation system (PNS)

is an instance of such a dead reckoning approach. The

inertial sensor-based method makes great contributions to

continuous and seamless indoor localization and does not

require any additional infrastructure requirement. How-

ever, due to its hardware characteristics, this method is

vulnerable to the accumulation of errors from senor read-

ings when moving distance increases, and inaccurate

heading values captured from the geomagnetic sensor are

the main sources of the accumulative error [9, 10]. The

factors of inaccurate heading can be divided into two main

aspects: the geomagnetic disturbances and the body swing.

As the tracking accuracy depends critically on the sensors

data, the accumulation of errors should not be compro-

mised by the designer of indoor pedestrian tracking system.

To address the inherent problem of cumulative location

errors, many previous works have try to limit the usage of

sensors or the tracking area, such as constraining the sensor

placement to a certain position in order to obtain a correct

sensor reading [11, 12]. These systems are usually appli-

cable part of the indoor environment and obviously not

practical in real indoor environment. There are other

schemes that use highly accurate sensors to handle this

inherent problem [13]. These schemes can improve the

tracking accuracy, while they require additional costs

owing to their high precision or the need of auxiliary

positioning devices, apart from the physical discomfort of

the subject owing to direct body contact.

Recently, the approach of Hidden Markov Model

(HMM) has become a useful tool in the research commu-

nity for modeling spatiotemporal variability and feature

extraction. In this paper, we proposed WTrack, an indoor

pedestrian tracking system, which is applicable to various

indoor environments. This system is capable of handling

noisy sensors including body swing of natural walking and

geomagnetic disturbances without any additional infra-

structure, and provides a meter-level positioning accuracy

for users with common smartphone devices. To summarize,

the contributions of our work include:

• We built an indoor pedestrian tracking system using

only geomagnetic sensors and acceleration sensors that

are commonly carried by smartphones, in which the

algorithm can recognize and calibrate the geomagnetic

disturbances caused by objects.

• With the pre-defined fine-grained walk pattern, we

developed HMM-based walk pattern recognition to

track indoor pedestrians, which is robust to body swing

of natural walking. Outlier and bad zone of the trace

can be recognized and calibrated.

• To capture accurate sensor data with minimum energy

consumption, we propose an adaptive sampling mode,

which allows the sensors to change their sampling rates

according to the walking states of pedestrians.

The remainder of the paper is organized as follows:

Sect. 2 discusses the challenges of the pedestrian tracking

in indoor environments. The components and design con-

tributions of the proposed WTrack scheme are described in

detail in Sect. 3. Then, we present the experimental results

and evaluate the performance of WTrack in Sect. 4. Sec-

tion 5 discusses the related works in indoor pedestrian

systems. Finally, Sect. 6 concludes the paper.

2 Challenges and motivation

2.1 Overview of inertial sensors-based tracking system

In the following discussion, indoor pedestrian tracking

systems use only geomagnetic sensors and acceleration

sensors presented in smartphones to collect information

about the pedestrian’s location, along with the heading and

distance moved. Then, we can get pedestrian’s trace by the

method of dead reckoning with the collected sensor data.

The displacement and heading for walking are obtained

by the above sensors. Then, the pedestrian’s position can

be calculated using the method of dead reckoning, as

shown in Fig. 1. The initial location of the pedestrian can

be denoted as (x, y). The step length and step count are

denoted as sl and sc, respectively. The step length and step

count estimate process is out of scope of this paper. h

represents the heading captured from geomagnetic sensor.

Then, traces of indoor pedestrians can be obtained by

continuous calculation with the following formula:

ðx�; y�Þ ¼ ðxþ sl� sc� cos h; yþ sl� sc� sin hÞ

In particular, we will focus on how to achieve an accurate

heading value from the geomagnetic sensor in this paper.

Fig. 1 Principle of dead reckoning
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2.2 Challenges

A pedestrian tracking system with smartphone relies on

acquiring an accurate heading from the geomagnetic sensor

in order to produce reliable displacement estimation.

Inaccurate heading values are the main sources of the

accumulative error which is a nontrivial task for indoor

tracking system. The geomagnetic sensor reading can be

affected by many factors in real indoor environments.

Generally, the factors of inaccurate heading value can be

divided into two aspects: the body swing of natural walking

and the geomagnetic disturbances.

The error originated in body swing is an important part

of the overall error seen in the tracking process. As we all

know, body swing is natural and inevitable when a

pedestrian normally walks. Obviously, such body swings

will lead to the shaking of smartphones held in hands, and

the sensor data collected from the geomagnetic sensor will

be constantly changing during one step. We have done a

quantitative experiment to describe it, as shown in Fig. 2a.

The ground truth heading of a pedestrian is 20�. Never-

theless, the collected seven heading samples in one step

deviate from the ground truth heading to varying degrees

due to the influence of body swing, and the deviation is

associated with the walking speed of the pedestrian.

Therefore, in most cases, heading collected at a particular

moment of one step cannot fully represent the heading of

this whole step. A reasonable walking model should be

established to resist the interference of body swing of

natural walking.

Compared to the body swing of natural walking, geo-

magnetic disturbances caused by nearby objects have a

significantly higher impact on heading values. To examine

the effects of nearby objects, we select several different

objects such as an elevator, a laptop (DELL vostro5460),

and fire extinguisher box. Then, we fix the objects location

and measure the heading value collected from geomagnetic

sensor as the sensor is brought closer to the objects. For

comparison purposes, we did this both with and without

these objects, and the test without these objects is consid-

ered to the ground truth of the heading value, as shown in

Table 1. By comparing the actual collected heading value

in Fig. 2b with the ground truth heading, we find that the

influence from these objects rises quickly as the distance

decreases in the case of interference from some objects.

When the distance is \10 cm, the influence is nearly

double the ground truth which is obviously out of the tol-

erance of indoor pedestrian tracking system. Therefore, the

effect of geomagnetic disturbances should be compromised

by the system designer when providing meter-level posi-

tioning accuracy for common smartphone users. Addi-

tionally, it is difficult to predict and identify these

geomagnetic disturbances with traditional approaches,

because the effect of different objects is hard to quantize or

model.

Furthermore, as we cannot simply judge whether a

position point is right or not from its macro-position in the

trace, because in some cases, some wrong points in the

whole traces seem to be reasonable if judging from the

macro-perspectives. Thus, a novel micro-perspective

methodology which focuses on the observation within one

step needs to be designed.
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Fig. 2 Influences of body swing of natural walking and geomagnetic

disturbances. a Heading with body swing and the ground truth

heading in one step at different speed. b Heading with geomagnetic

disturbances for three objects

Table 1 The impact on ground truth heading caused by different

objects

Objects Ground truth heading (�)

Elevator 130

Fire extinguisher box 90

Laptop 68
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3 WTrack: HMM-based walk pattern recognition

and pedestrian tracking

Aimed at reducing the cumulative locating errors that are

caused by noisy inertial sensors in dead reckoning systems,

we propose a HMM-based fine-grained walk pattern rec-

ognition and pedestrian tracking system, called WTrack.

WTrack firstly defines walk patterns for indoor pedestrians

and models them with HMM. Then, this system tracks

indoor pedestrians by continuously recognizing the pre-

defined walk pattern of the pedestrian.

3.1 Hidden Markov Model

The Hidden Markov Model focuses on analyzing correla-

tion of spatiotemporal information and modeling them

mathematically. Related to HMM, there are several effi-

cient algorithms for learning and recognition, such as the

Baum-Welch algorithm [14] and Viterbi algorithm [15].

Figure 3 shows the structure of HMM, where a collection

of states is connected by transitions. Each transition has a

pair of probabilities: a transition probability (which pro-

vides the probability for undertaking the transition) and an

emission probability (which defines the conditional prob-

ability of emitting an output symbol from a finite alphabet,

given a state). A formal characterization of HMM is shown

as:

{s1,s2,s3, …, sN}—A set of N hidden states. The state at

time t is denoted by the random variable qt.

{v1,v2,v3,…,vM}—A set of M distinct observations. The

observation at time t is denoted by the random variable Ot.

The observations correspond to the physical output of the

system being modeled.

A = [aij]—An N 9 N matrix for the state transition

probability distributions, where aij is the probability of

making a transition from state si to sj:

aij ¼ P ðqtþ1 ¼ sj qt ¼ sij Þ:

B = [bj(i)]—bj(i) is output probability at time t in

state sj:

bjðiÞ ¼ P ðot ¼ vi qt ¼ sj

�
� Þ:

p = [pi]—The initial state distribution, where pi is the

probability that the state si is the initial state:

pi ¼ P q1 ¼ sið Þ:

We use the compact notation k = (A, B, p) to represent

an HMM. The specification of an HMM involves the

choice of the number of states N, and the number of dis-

crete symbols M, and the specification of the three proba-

bility densities A, B, and p.

3.2 HMM-based fine-grained walk pattern recognition

To cope with the accumulative errors caused by body

swing of natural walking in indoor pedestrian tracking, we

model walk patterns during walking for pedestrian with

HMM referring to the characteristics of indoor pedestrian.

In our case, the hidden states correspond to walk patterns.

While the output (list of observations of indoor pedestri-

ans) is known, the sequence of hidden states (walk patterns

of indoor pedestrians) is not. Our goal is to measure the

probability for each type of walk pattern and recognize the

most likely walk pattern of the pedestrian.

Prior to using an HMM, we first need to define the

appropriate walk pattern in our system which actually

corresponds to the hidden states of HMM and select the

representative observations for it.

3.2.1 Walk pattern

We classify walk patterns of indoor pedestrians with

heading and speed. Figure 4 shows the definition of walk

pattern. In order to facilitate the analysis, we divide the

360� of a circle into 24 heading segments with the intervals

of 15�. Then, the heading of the pedestrians can be clas-

sified as one of the 24 heading segments. On the other

hand, considering that normal speed range of indoor

pedestrians is 0.5–2 m/s, we classify the speed of indoor

pedestrians into three speed types: slow (with the speed

range of 0.5–1 m/s), medium (with the speed range of 1–

1.5 m/s), and fast (with the speed range of 1.5–2 m/s).

Hence, walk patterns of indoor pedestrians can be divided

into a total of 72 types, every walk pattern contains two

aspects, heading segment and speed type. For a given

heading and speed, walk patterns {s1, s2, s3, …, sn} can be

expressed as:

si ¼ (heading segment; speed type); i¼ 1; 2; . . .; N

where heading segment ¼ heading

15�
;

speed type ¼
slow 0:5m=s \ speed \1m=s

media 1m=s \ speed \1:5m/s

fast 1:5m=s \ speed \2m=s

8

><

>:

Fig. 3 Structure of HMM
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3.2.2 Observations

In order to highlight the distinction, three variables

(i.e., the variation of the heading Dhd, the z-axis

acceleration acce and the walking speed spd are selec-

ted as the observations to reflect the fine-grained char-

acteristics of the indoor walk pattern in one step. To

facilitate measuring, we divide the walking time of one

step T into N equal portions, which returns the time for

the collecting sensor data tn as nT/N, n = 1, 2, …, N.

At each tn, n = 1, 2, …, N, we collect data from inertial

sensors as observation Oi = (Dhdi, accei, spdi), i = 1,

2, …, N. Then, the observations of HMM vi can be

expressed as:

vi ¼ ½O1;O2; . . .;ON �

3.2.2.1 The variation of heading To reflect the trend of

heading within one step, we select the variation of the

heading as one of the observations. According to estab-

lished human walking statistics, the time range of normal

walking is 0.2–2 s. We define that the corresponding

heading at time ti is hdi, i = 1, 2, …, N. The variation of

heading Dhdi at time ti can be expressed as:

Dhdi ¼ hdi � hdi�1; i ¼ 1; 2; . . .; N

3.2.2.2 Z-axis acceleration Z-axis acceleration captured

from acceleration sensor reflects pedestrian’s acceleration

in the vertical direction. In order to identify the distortion

caused by the body swing of natural walking, we select the

z-axis acceleration as one of the observations. accei is the z-

axis acceleration at time ti (i = 1, 2, …, N).

3.2.2.3 Speed In normal walking process, speed during

each step is relatively stable and easy to distinguish due to

personal walking habits, so speed is the important auxiliary

observations to recognize walk. The speed of each step can

be obtained by integrating the instantaneous acceleration at

each step of the pedestrians.

3.2.3 Transition probabilities

Transitions among the hidden states are governed by a

different set of probabilities called transition probabilities.

Our transition probabilities reflect the following three

notions: (1) In general, there is a higher probability that the

walking pedestrians keep the preceding walk pattern,

instead of changing their walking directions or speeds

frequently. (2) Pedestrians can only change the walk pat-

tern from the end of one step to the start of the next, if the

person walks continuously and normally, i.e., a pedestrian

cannot change the walk pattern in one step, which ensures

that the walk pattern of pedestrians within one step is stable

and without change. (3) A pedestrian cannot walk unrea-

sonably fast in any walk pattern.

The transition probability p from the walk pattern i to

the walk pattern j is set as follows. We divide the transition

probability p into two components that are the transition

probability of heading Pheading and the transition proba-

bility of speed Pspeed. So, the transition probability distri-

bution matrix (A) of HMM can be expressed as:

A ¼
a11 . . . a1j

..

. . .
. ..

.

ai1 � � � aij

0

B
@

1

C
A; aij ¼ Pheadingði; jÞ � Pspeedði; jÞ

The transition probability of heading Pheading (i, j) from

hidden state i to hidden state j is set as follows: We define

Pheading (i, j) = h/2n, where n = |iheading - jheading|;

iheading and jheading are the heading segment that heading

of i and j are belonged to, respectively. h is the transition

probability of heading when j keep the same heading

segment with i, and h is the highest transition probability

of heading from hidden state i to hidden state j which

reflects the first notion. Note that Pheading (i, j) must sat-

isfy the constraints:

Xk

j¼1

Pheadingði; jÞ ¼ 1

where k represents total types of hidden states.

The transition probability of speed Pspeed (i, j) can be

calculated as follows. ispeed and jspeed are speed type that

speed of hidden state i and hidden state j are belonged to,

respectively. - is the transition probability of speed when j

keep the same speed type with i, and - is the highest

transition probability of speed from state i to states j, which

also reflects the first notion. We define the transition

probability of speed as:

Pspeedði; jÞ ¼
x
2n
; n ¼ ispeed � jspeed

�
�

�
�

By the same token, Pspeed (i, j) must satisfy the

constraints:

Fig. 4 Definition of walk pattern for HMM in WTrack
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Xk

j¼1

Pspeedði; jÞ ¼ 1

where k represents total types of hidden states.

3.2.4 Ground truth

To recognize the most likely walk pattern, we must choose

the appropriate ground truth or the reference signature

pattern. Obtaining this ground truth is a fundamental

challenge in the recognition of walk patterns, we use an

approach based on aggressive data cleaning to produce this

ground truth with reasonable confidence for a set of indoor

walk pattern.

We preprocess the data to obtain a standardized walk

pattern by setting up a standard fingerprint database for

each walk pattern. This is actually a sequence of \walk

pattern, observations[ pairs. For each walk pattern, par-

ticipants walk with mobile phones in the corresponding

walk pattern and record the standard observations, which

are along the three metrics defined above (the variation of

heading, z-axis acceleration, and speed). This trial is

repeated many times in different indoor areas, using dif-

ferent mobile phones, as well as choosing different par-

ticipants. Then, the average of all the collected

measurements serves as the final fingerprint data. To ensure

the credibility of the fingerprint database, we clean the

output data to satisfy the following constraints: No walk

time of one step exceeds 2 s, each heading value of one

step is matched to heading segment at most 10� from it, and

z-axis acceleration of pedestrians is \15 m/s2 but more

than 0 m/s2. It is believed that these constraints taken

together define a signature set of standard observations that

can be treated as ground truth with high confidence.

3.2.5 Walk pattern recognition

The emission probabilities in WTrack reflect the notion

that every walk pattern emits an observation with a par-

ticular conditional probability distribution. Concretely, the

emission probability density of hidden state sj with obser-

vations vi is described as follows:

Given the walk pattern sj, the standard observations vj ¼
O�1; O�2; . . .; O�N
� �

can be obtained by querying \walk

pattern, observations[ pairs of standard fingerprint dat-

abases. Observations of HMM vi can be expressed as

vi = [O1, O2, …, ON]. For observation vi and standard

observations vj, each observation component On and On
*

(n = 1, 2, …, N) is a three-dimensional vector including

variation of the heading Dhdi, the z-axis acceleration accei,

and the walking speed spdi:

On ¼ ðaccen; Dhdn; spdnÞ;
O�n ¼ ðacce�n; Dhd�n; spd�nÞ; n ¼ 1; 2; . . .; N

Here, we take the Euclidean distance between two

vectors of observations to measure the difference between

the actual observations and the standard observations. The

Euclidean distance dis (On, On
*) between On and On

*is

dis ðOn;O
�
nÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaccen� acce�nÞ
2þ ðDhdn�Dhd�nÞ

2þ ðspdn� spd�nÞ
2

q

Then, the Euclidean distance dis (vi,vj) between actual

observation vi and standard observation vj is:

dis ðvk; vjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

n¼1

dis ðOn;O�nÞ
2

v
u
u
t

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

n¼1

ðaccen � acce�nÞ
2 þ ðDhdn � Dhd�nÞ

2 þ ðspdn � spd�nÞ
2

v
u
u
t

Hence, the emission probability density B = {bj (i)} of

hidden state sj with the observations vi is:

B ¼ ½bjðiÞ� ¼

b11 . . . b1j

..

. . .
. ..

.

bi1 � � � bij

0

B
B
@

1

C
C
A
;

bij ¼ pðot ¼ vijqt ¼ sjÞ ¼ g ðdis ðvi; vjÞÞ ¼ e
�disðvi�vjÞ2

2d2

where g (x) is the Gaussian function with zero mean. The

variance of g (x) depends on the sensor that produced the

observations. To this point, we have accomplished to

model walk pattern of indoor pedestrians through HMM.

In the next stage, Viterbi decoding is used to recognize the

maximum likelihood sequence of hidden states given a set of

observables and the emission probability distribution matrix

B and transition probability matrix A. This corresponds to the

most likely sequence of walk patterns, given a sequence of

observations. To find the single best state sequence

Q = q1q2…qt for the given observation O = O1O2…Ot, the

quantity for Viterbi decoding is defined as:

dtðiÞ ffi maxQP ðQ; qt ¼ si;OjkÞ

To get a single sequence of the walk pattern si with the

highest output probability at time t and accounting for the

first t observations, we use induction as follows:

d1 jð Þ ¼ pjbjðO1Þ 1	 j	N

dt jð Þ ¼ max
i

dt�1 jð ÞaijbiOt

� �

2	 t	 T ; 1	 k	N

where aij represents the probabilities that the walk pattern

transfers from i to j and biOt
is the probability of matching

the walk pattern i to the observations Ot.

1906 Pers Ubiquit Comput (2014) 18:1901–1915

123



For the backtracking information that is used to record

the previous selection of a certain walk pattern that max-

imizes the local probability dt jð Þ of for each t and j, we use

a back pointer wt (j).

wt jð Þ ¼ arg maxi dt�1 ið Þaij

� �

2	 t	 T ; 1	 j	N

In case of null transitions, the likelihood of the source

state at time t is simply maximized without time delay as:

dt jð Þ ¼ maxi dt ið Þaij

� �

;

i� ¼ argmaxi dt ið Þaij

� �

;

wt jð Þ ¼ wtði�Þ

For reliable walk pattern recognition, we define a con-

stant threshold p (TH) for the output probability of Viterbi

decoding algorithm dt (i). If dt (i) is not less than the chosen

threshold, the output walk pattern sequence is regarded

legal and the walk pattern is recognized with high

confidence.

Finally, to uncover the most likely state sequence Q� ¼
q�1q�2. . .q�T after the preceding computation, we must trace

back to the initial state by following the Viterbi path of ws

as:

q�T ¼ SN ;

q�t ¼ wtþ1 q�tþ1

� �

; t ¼ T � 1; T � 2; . . .; 1

Q� ¼ q�1q�2. . .q�T is the final recognized walk pattern. Then,

we extract the heading from the walk pattern to track the

pedestrian. Figure 5 shows the indoor pedestrian tracking

process. Figure 5a shows that raw trace of pedestrians (shown

in red) calculated with the raw heading value collected in a

random time of one step. As we can see, it greatly deviates

from real traces (shown in black). Figure 5b shows the result

of walk pattern recognition. Segments of the trace shown in

purple are in close agreement with the real trace after tracking

with the HMM-based walk pattern recognition.

3.3 Outlier removal and bad zone calibration

3.3.1 Outlier removal

Point p is recognized as an outlier if it satisfies any of the

following conditions:

• Heading calculation of p cannot match any heading

segment of walk pattern of the standard fingerprint,

which also means heading of p is disorganized.

• Speed of p is illegal, which means its speed is beyond

normal speed range of indoor pedestrians (0.5–2 m/s).

To recognize and eliminate the outliers with the HMM-

based walk pattern recognition result, we take the output

probability dt (j) of Viterbi decoding as a metric to measure

the reliability of the point. Then, we set a probability con-

straint, through a threshold p (TH), for reliability metric. A

sample is recognized as an outlier only if its reliability metric

is less than p (TH), which means the observations of that

sample cannot be matched to any of defined walk patterns.

Because outliers are usually several points of the track,

we divide the whole track into short sequences of points

with a sliding window of length k. The sliding window

moves backward one unit every time. Assuming length of

the whole track is T, the number of short sequences of

points can be expressed as C = (T - k ? 1), and we cal-

culate the quantity dt (j) for each short sequence of points

and measure credibility of dt (j) with the defined threshold

p (TH). Then, if dt (i) is less than the chosen threshold, the

selected short sequence of points of the track is recognized

as the outlier that should be eliminated, shown in Fig. 5b in

gray. Experimental results verified the fact that the chosen

threshold is intentionally conservative and accommodates

for the body swing of natural walking or the interference of

some electromagnetic devices (see Section 4).

3.3.2 Bad zone calibration

Here, we focus on removing the outlier points from the

tracking, which would cause outages in the tracking

(a)

(b)

(c)

(d)

Fig. 5 Indoor pedestrian tracking process. a Raw trace. b Walk

pattern recognition. c Outlier removal. d Interpolation and bad zone

calibration

Pers Ubiquit Comput (2014) 18:1901–1915 1907

123



process. The outages cause their following samples to also

be incorrectly mapped (called bad zone). The gray part in

Fig. 5d shows the bad zone for an instance of tracking.

Therefore, after outlier removal, a simple scheme is pro-

posed to deal with outages and bad zone by inserting

interpolated points in such regions. The bad zone is cali-

brated by exploiting the preceding normal observations

through curve fitting method. The algorithm generates

interpolated samples at 1 s intervals along the curve fitting

direction of the track, connecting the last observed point

before the outage, and the first following the outage,

assuming a normal walking speed. Experimental results

showed that this approach can match the interpolations to

the outages of the track quite well and achieves good

indoor positioning accuracy (see Sect. 4).

3.4 Geomagnetic disturbances recognition

and calibration

We use three-axis accelerometer which is commonly car-

ried by smartphones to recognize the geomagnetic distur-

bances caused by some nearby objects. We assume that an

indoor pedestrian walk along a corridor with a smartphone,

and turn at the corner. A geomagnetic disturbance source is

placed in the middle of the corridor. For a particular step

(denoted as step n), we collect m acceleration samples of

each axis, denotes as xn1, xn2,…, xnm, yn1, yn2, …, ynm and

zn1, zn2, …, znm. Then, we measure RMS acceleration of

them which can be calculated as follows:

xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
n1 þ x2

n2 þ . . .þ x2
nm

m

r

;

yn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2
n1 þ y2

n2 þ . . .þ y2
nm

m

r

;

zn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2
n1 þ z2

n2 þ . . .þ z2
nm

m

r

Thus, the feature acceleration of step n (denoted as

accen) can be represented as a three-dimensional vector:

accen ¼ xn; yn; znð Þ
To judge whether the pedestrian turns or not, we com-

pare the current step n with the previous two steps by

calculating the Euclidean distance of three-axis accelera-

tion between them, respectively, as:

dis ðaccen; accen�1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxn � xn�1Þ2 þ ðyn � yn�1Þ2 þ ðzn � zn�1Þ2
q

;

dis ðaccen; accen�2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxn � xn�2Þ2 þ ðyn � yn�2Þ2 þ ðzn � zn�2Þ2
q

If dis ðaccen; accen�1Þ þ dis ðaccen; accen�2Þ	 e, where

e represents the distance threshold, it indicates that the

pedestrian walked straight in step n. Thus, if the heading

collected from the geomagnetic sensor changes signifi-

cantly, it will be recognized as the geomagnetic distur-

bances. The pedestrian’s heading in step n will be

calibrated to the walking heading in step n – 2 (denoted as

hdn - 2). On the contrary, if dis ðaccen; accen�1Þþ
dis ðaccen; accen�2Þ	 e, it indicates that the pedestrian turn

at the corner in step n, and his heading should be deter-

mined by the heading value collected from the geomag-

netic sensor (denoted as hd*). Therefore, the pedestrian’s

heading (denoted as hdn) in step n can be described as:

If n = 1 or 2, hdn = hd*, else

hdn ¼
hdn�2 dis ðaccen; accen�1Þ þ dis ðaccen; accen�2Þ	 e

hd� dis ðaccen; accen�1Þ þ dis ðaccen; accen�2Þ
 e

(

3.5 Adaptive sample rate adjustment

To capture accurate sensor data with minimum energy

consumption, the inertial sensors can adaptively change

their sample rates according to the walking states of

pedestrians. The adaptive sample rate adjustment is shown

in Algorithm 1. The walking states of pedestrians are

divided into two types: steady state and non-steady state.

The heading values of pedestrians are used to measure

walking states with hd being the heading at time d. The

input of this algorithm is a continuous heading value

sequence hi (i = 1, 2, k). The variation of the heading hd
0

reflects the change between two continuous heading sam-

ples. The variation of the heading change hd
00 describes the

variation between two continuous heading changes. When

the pedestrian is walking straight or is in other stable states,

heading value of pedestrians does not change sharply.

Hence, the variation of the heading change hd
00 is less than

a certain minimum. The sample rate is set constant.

Otherwise, when a pedestrian is always changing his

walking state in some changeable indoor areas, it is likely a

non-steady state. So sample rate, in this case, should be set

to a higher one.
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4 Performance evaluation

4.1 Experimental setting

For the experimental study, we choose the second floor of

the New Library of Wuhan University to evaluate the per-

formance of WTrack system. Three representative areas in

this place were selected for evaluating the performance of

the system shown in Fig. 6: (1) a 20-m corridor between

two courtyards, (2) an annular book reading area whose

radius is 2.5 m, (3) a 13.8 9 9.9 m2 circulation area, as

shown in Fig. 6. This place includes some metal objects,

such as elevators, which can disturb geomagnetic distribu-

tion and are common in indoor environment. We select

three different smartphones (Samsung i9300, HTC T328 W

and Lenovo K900) as the data collection tool, each of which

is equipped with various sensor devices including acceler-

ation sensors and geomagnetic sensors. During this exper-

iment, we walked holding the mobile phone in the hand to

continuously record the location, heading and three-axis

acceleration. We have conducted extensive experiments on

user with these smartphone devices, with over 50 subjects

walking over an aggregate distance of over 40 km.

To select the appropriate threshold p (TH), we have

counted errors and calculated the false-positive and false-

negative rates by varying the threshold p (TH) for the

output probability of Viterbi decoding algorithm dtðiÞ.
False-positive and false-negative rates for the walk pattern

recognition for different threshold p (TH) are shown in

Fig. 7. The result suggests that a high p (TH) may result in

many normal samples being mistaken for outliers, so the

false-positive rate improves. On the other hand, a low

threshold p (TH) causes more outliers to be missed, so

false-negative rate improves. Considering the studies on

false-positive rate and false-negative rate comprehensively,

we find that the best results are observed for p (TH) = 0.6.

4.2 Heading correction

In tracking task, there are two types of noisy sensors: One

type occurs due to the body swing of pedestrians’ natural

walking, and the other occurs when the captured heading is

disturbed by various objects. Here, we explored the two

types of noisy sensors by experimentation. We consider the

heading error as the performance metric. This error can be

calculated as: heading error = captured heading - actual

heading

To explore the correction result for the body swing, we

walked in the three representative areas and selected six

steps in the typical segment of the area to calculate the

heading error. Figure 8 shows heading error of the selected

six steps, for raw heading error and heading error after

calibration. The three figures describe heading error caused

by body swing in three different areas. In Fig. 8a, the track

is close to a straight line in the corridor, thus the heading of

pedestrian only has small changes during the whole

walking process. The heading error is minimal among the

three areas. In contrast, for area 2, the track is nearly a

circle which reflects that the heading of pedestrian is

changing drastically during the whole walking process, as

shown in Fig. 8b. Figure 8c shows that the heading error of

area 3 is maximal of three tracks. Experimental results

show that body swing has larger disturbances in heading

calculation in the more complex areas than in straightfor-

ward arranged spaces. In additional, as we can see, the

heading error after calibration reduces to nearly half of the

raw heading error; 80 % of heading error after calibration

is \15� which is good enough for positioning.

Next, to examine the interference of nearby objects, we

select a representative trace in the experimental environ-

ment, as shown in Fig. 9. As we can see, there is an
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Fig. 6 Three experimental routes in the New Library of Wuhan
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elevator near the path which is a common object in the

indoor environment, and the distance between the elevator

and pedestrian is 0.5 m. A participant walked ten steps

holding the mobile phone in hands along the path for

(a)

(b)

(c)
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Fig. 8 Correction results for body swing. a Area 1. b Area 2.

c Area 3
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several times. During the first eight steps, the participant

walked straight to the east which indicates that partici-

pant’s actual heading is 90�. While the participant turns to

the north at corner, the participant’s actual heading is 0�
during the last two steps. We record the three-axis accel-

eration and the heading value of the participant, which is

shown in Fig. 9b, c. In Fig. 9b, as the participant kept

walking straight in the first eight steps, there is only a small

fluctuation in the three-axis acceleration curve of the par-

ticipant. But in the steps 9–10, when the participant turned

at the corner, the x-axis and y-axis acceleration rises to

nearly 2 m/s2. Compared with y-axis, x-axis acceleration

witnessed a more obvious change when the participant

turned. However, no matter the participant turned or

walked straight, there are almost no significant changes of

the z-axis acceleration from the beginning to the end.

Heading value of the participant of the ten steps is shown in

Fig. 9c with the default Euclidean distance threshold of

2.0. Comparing the ground truth heading with the raw

heading, we can see that there is few heading error during

the first four steps. But in steps 5–7, as the participant

approaches the elevator, the raw heading drops quickly to

\70� which denotes nearly 20� heading error because of

the geomagnetic disturbances caused by the elevator.

Nevertheless, if our method is applied, the heading is

corrected to 90� immediately, which illustrates that our

method can recognize the geomagnetic disturbances and

calibrate the heading error effectively.

As we choose different threshold e for the Euclidean

distance of three-axis acceleration between step n and the

previous step, the false-positive (FP), false-negative (FN)

and the calibration results are shown in Table 2. Each of

these values is a result based on testing 1,000 steps. We can

see FP and FN rates increase for more strict thresholds (i.e.,

FP with a higher threshold or FN with a lower threshold).

However, the overall FP and FN rates are still very slow,

and the average error of the corrected heading is \10�.

When e is set to 2.0, the sum of FP and FN reaches to the

minimum, and the average heading error also achieves the

minimum value of 5.56� which is an acceptable error

Table 2 The results of geomagnetic disturbances recognition with

different Euclidean distance threshold e

e False-positive

rates (%)

False-negative

rates (%)

Average error of the

corrected heading (�)

0.5 2.4 7.5 9.12

1.0 3.1 7.1 7.25

1.5 3.5 6.5 6.54

2.0 3.9 5.2 5.56

2.5 4.4 5.0 8.21
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Fig. 10 Heading correction results of geomagnetic disturbances test

with different objects. a Geomagnetic disturbances test for fire

extinguisher box. b Geomagnetic disturbances test for elevator.

c Geomagnetic disturbances test for laptop
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range. There is a very minimal probability that we falsely

recognize the geomagnetic disturbances, and the heading

error is beyond 5.56�.

Figure 9 only shows the calibration result under the

interference of elevator. As we have proved in Section 2,

different objects have varying degrees of impact on the

heading value. Thus, we choose several different objects

(i.e., fire extinguisher box, elevator, and laptop) to verify

the heading correction result of our system, which is shown

in Fig. 10.

As we can see, the heading in steps 5–7 is obviously

disturbed by three objects. Once the participant comes

close to the object in the sixth step, the heading error

reaches to the top. Of all the three objects, fire extinguisher

box has the most impact. However, once the heading is

calibrated with our method, we can see that the heading

error reduces significantly and the biggest heading error is

\5�. These results indicate that WTrack can effectively

resist the geomagnetic disturbance caused by various

objects and maintain the heading error of \5�.

4.3 Tracking evaluation

A collection of indoor 50 tracks was collected in each area

and preprocessed by filtering accidental data and taking

average value of the remaining data. Figure 11a shows that

the raw tracking is obviously distorted and cannot match

the indoor map due to the interference source shown in

green. The points in green are the recognized outliers

which look like being ‘‘pulled’’ to the side close to the

interference source. Once the raw tracking data are cor-

rected with the recognized walk pattern, outliers are

removed and interpolation applied, and the track curve

becomes smooth and closer in shape to the actual track

shown in Fig. 11b, c.

4.4 Positioning accuracy

Figure 12 shows the cumulative distribution function

(CDF) of distance error introduced by the system for both

200 randomly selected 100-m-long tracks, for different

types of indoor environment, as well as for different cali-

bration methods. The distance error is a performance

metric accuracy of a system as it represents the distance

between ground truth track and the final track after cali-

bration. It shows that there is about 20 % probability of the

distance error of raw tracking being more than 4 m, which

is beyond the tolerance limit for indoor positioning. Also,

the distance error will accumulate as distance increases.

Compared to the raw tracking, the WiFi auxiliary calibra-

tion gives 90 % chance of distance errorless being less than

*4 m [17], but there is still a 20 % probability of it being

more 4 m. In addition, Fig. 12 shows that the accuracy of

HMM-based calibration is found to be within 2 m with the

high probability of 92.5 %. Experimental results show

WTrack can achieve a mean accuracy of 2 m in various

indoor situations, which is considered adequate for indoor

location-based service applications.
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4.5 Energy efficiency

To get a better understanding of energy costs of this system

on a smartphone, we measured the power consumption as

an indicator. As the absolute power consumption of

smartphones cannot represent the actual power consump-

tion of our proposed approach due to background pro-

cesses, we take the samples obtained in one step as the

power consumption metric. A 10-m corridor on the second

floor of the new library was chosen as the experiment site,

shown in Fig. 13a. During this experiment, we run a simple

application that repeatedly captures sensor data in the

experimental site in constant sample rate mode and adap-

tive sample rate adjust mode, respectively, and counts

sample numbers for one step. Here, we set the constant

sample rate for capturing sensor data 20 times each step

throughout the experiment, and the adaptive sample rate

mode for capturing sensor data (1) 5 times each step when

the experimenter is in stable state, and (2) 20 times each

step when the experimenter is in non-stable state. The

experimental data show that the adaptive sample rate

adjustment mode reduces the energy consumption by 52 %

in comparison with the constant sample mode, as shown in

Fig. 13b.

5 Related works

Indoor pedestrian positioning and tracking systems are

poised to serve as the foundation for context-aware ser-

vices, and there exist many such commercially available

indoor positioning and tracking technologies [16–18],

classified in the following major categories: Fingerprint-

based indoor localization techniques have been one of the

most popular approaches to indoor localization and

pedestrian tracking [19]. This approach, that does not

require any hardware deployment, has been to leverage

already available wireless signals (e.g., WiFi, cellular) to

profile a location, usually in the form of received signal

strength indicator (RSSI) values. Of all fingerprint-based

indoor localization techniques, WiFi-based techniques are

primarily used due to the broad availability of WiFi

infrastructure [17, 20, 21]. However, the operating fre-

quency range of WiFi signals makes them susceptible to

human presence and orientation as well as to the presence

of small objects in a room. Moreover, as this requires

information about the AP positions, and the propagation

model can vary significantly indoors, the accuracy of the

WiFi triangulation can be uneven. Thus, it exhibits several

limitations when considering indoor environments where a

person needs to be localized at the meter level.
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The most popular and inexpensive technology for indoor

pedestrian tracking is to employ inertial sensors [22]. The

inertial sensor-based method works as a stand-alone

method without any infrastructure requirement. In [23],

Adaptive Kalman filters and activity-based map matching

are utilized to detect step heading. However, errors accu-

mulate quickly as walking distance increases. Li et al. [7]

proposed a reliable and accurate indoor localization

method using phone inertial sensors. However, they have

not yet solved the problem of direction error, for which

magnetic interference and body swing are the two major

causes. To compensate for inaccuracies in heading esti-

mation, Park et al. presented a pedestrian tracking system

[24], which can eliminate accumulative errors in indoor

corridor environments that are laid out in a perpendicular

design. This setup has the obvious limitations that it is only

useful in some specific indoor corridor environments and

cannot adapt to a variety of randomly sized indoor spaces.

Many other attempts have been to solve the problem with

smartphone. But, these solutions make certain assumptions.

In [25], SparseTrack uses a digital compass and an accel-

erometer in a smartphone to track pedestrian location and

correct the location in sparse indoor environments. How-

ever, SparseTrack relies on an additional ultrasonic sensor,

which is sparsely distributed, to adjust the current location

directed by smartphones. In Lee et al. [26], proposed a

method to estimate the orientation based on acceleration

signals. But, it assumes that the initial orientation of the

phone is known. To improve tracking accuracy, Footpath

[27] matches the detected steps onto the expected route

using sequence alignment algorithms from the field of

bioinformatics, where an accurate indoor map is assumed

but hard to get in some old buildings actually.

6 Conclusions

This paper presents a HMM-based pedestrian tracking

system, called WTrack, using only geomagnetic sensors

and acceleration sensors in smartphones for various indoor

environments. Firstly, WTrack defines walk pattern for

indoor pedestrians and models it with HMM. With the pre-

defined fine-grained walk pattern, we developed HMM-

based walk pattern recognition to track indoor pedestrians,

which is robust to body swing of natural walking. Outlier

and bad zone of the trace can be recognized and calibrated.

Meanwhile, an effective algorithm is proposed to recognize

and calibrate the geomagnetic disturbances caused by

objects. To capture accurate sensor data with minimum

energy consumption, we propose an adaptive sampling

mode. WTrack is capable of eliminating cumulative

locating errors caused by noisy inertial sensors without any

additional infrastructure or extra sensors and provides

meter-level positioning accuracy. The experimental results

showed WTrack effectively reduces power consumption by

adaptive sample rate adjustment up to 52 % and signifi-

cantly improve the positioning accuracy up to 92.5 %.
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