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EXECUTIVE SUMMARY 

This report documents the accomplishments of Phase 1 and Phase 2 of the Verification of 
Adaptive Systems research task, under Interagency Agreement IA1-1073, DTFACT-10-X-
00008, between the Federal Aviation Administration  and NASA Langley Research Center 
(NASA-LaRC). This research study addresses verification and safety assurance issues for the use 
of adaptive systems such as those planned for the Next Generation Air Transportation System 
and the National Airspace System air traffic control system. An adaptive system was defined as a 
system that changes behavior based on an active feedback process in the presence of changes in 
the system or its environment. Requirements for system safety assurance are based on the 
general concept that correct behavior of a system can be specified, predicted, and verified prior 
to operation. Consequently, any proposed use of adaptive systems that violates that concept 
raises issues that must be evaluated. The goal of this research was to conduct a preliminary 
examination of what is necessary to provide sufficient assurance that an adaptive system is safely 
used in an aircraft product from a software perspective. 

The research in both phases of this effort targeted understanding the applicability of existing 
software assurance requirements, especially those in RTCA/DO-178B, “Software Considerations 
in Airborne Systems and Equipment Certification,” and the recently released update to DO-
178C, with its corresponding supplements, for adaptive systems. Work for Phase 1 was 
performed by NASA-LaRC, and the Phase 2 work was performed by Honeywell International 
Inc., under subcontract to NASA-LaRC. 

The Phase 1 effort focused on understanding the latest current technology in machine learning 
and the mechanisms that could cause an aircraft system to adapt or change behavior, in response 
to change in its environment. Understanding the mechanisms used for adapting is essential to 
understanding the impact on software assurance. Much of the work in the initial phase consisted 
of gathering information on the broad field of machine learning, how machine learning is used to 
enable a system to adapt (especially with respect to feedback processes), and where machine 
learning is being used in various domains (with particular interest in controls applications). 
Research is reported in five areas for Phase 1: 1) terminology; 2) understanding adaptive 
approaches; 3) the use of adaptive algorithms and their role in adaptive systems’ evaluation; 4) 
adaptive controls and their use in adaptive systems; and 5) initial identification of safety issues. 

In Phase 2, the disparate information on different types of adaptive systems developed under 
Phase 1 was condensed into a useful taxonomy of adaptive systems. As evident from the 
taxonomy, the wide range of factors relevant to adaption makes it clear that the applicability of 
the DO-178C objectives will likely differ depending on the type of adaptive system. Therefore, 
determining the applicability of the current software assurance process is extremely difficult for 
the general case (that is, for adaptive systems in general), but possible for a specific adaptive 
system. Consequently, the Honeywell team examined an exemplar adaptive system and 
evaluated how the output of that controller can be predicted and verified in compliance with 
system safety and assurance standards. A significant product of this evaluation is a table, 
provided in appendix C, that describes the impact of the exemplar adaptive system on each DO-
178C objective. In addition, a number of system-level objectives were identified that may be 
necessary to ensure that adequate verification of an adaptive system is possible. The importance 
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of considering adaptive systems starting at the system level is discussed, along with 
recommendations for follow-on work in AS safety and verification requirements. 
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1. INTRODUCTION

In the “Decadal Survey of Civil Aeronautics: Foundation for the Future” [1], the National 
Research Council identified intelligent and adaptive systems as one of the five common threads 
for the “51 high-priority R&T challenges.” In general, adaptive systems are defined as those that 
have the ability to change behavior in response to changes in their operational environment, 
system configuration, resource availability, or other factors. Adaptive systems have been used 
effectively in a number of application domains, from industrial plant control to missile guidance, 
though they have not been used in civil aviation. However, that is expected to change. The 
decadal survey explicitly identified adaptive systems technologies to be the key enablers for 
intelligent flight controls; advanced guidance and adaptive air traffic management (ATM) 
systems; and for health management techniques to extend life and improve maintenance. 

Adaptive flight and engine control systems have been researched for decades and are attractive 
for several reasons. There are adaptive systems that have the ability to detect, anticipate, and 
prevent failures and reconfigure various aircraft systems (e.g., displays or controls) in response; 
some that simply improve or optimize performance in a changing operational environment; and 
others that can detect performance degradation due to failure or damage. Expected growth in air 
traffic is another reason to research the potential. The Next Generation Air Transportation 
System (NextGen) Integrated Work Plan [2], for example, describes “net-enabled adaptive 
control of ground, airborne and satellite weather observation sensors in real time” as an enabling 
capability to meet needs for improved weather observations. Adaptive systems are also being 
proposed for management of human machine interactions on aircraft and ATM systems to 
mitigate safety incidents due to failures at the human machine interface. In this case, the 
emphasis is on the system behavior that adapts to the current context (e.g., tasks, user state, 
system configuration, environmental states, etc.). 

The use of advanced computational techniques, such as those that underlie adaptive systems, is 
not a new topic in the aviation domain. In 1994, the Federal Aviation Administration (FAA) 
published a chapter in their Digital Systems Validation Handbook titled “Artificial Intelligence 
with Applications for Aircraft” [3]. Artificial intelligence (AI) is a broad and rapidly expanding 
field of technology “devoted to computer programs that will mimic the product of human 
problem solving, perception, and thought” [3]. The handbook chapter provided an overview of 
AI technology, focusing on expert systems, and identified potential certification issues for 
aviation systems that would use those technologies. At that time, expert systems were intended to 
automate procedures that were already known and serve as assistants or advisors instead of 
primary decision tools. Today, expert systems are safely used in that capacity in aviation 
applications. 

Adaptive systems, however, have succeeded expert systems as the next AI technology for 
aviation applications. Adaptive technologies, such as neural networks (NN), can be introduced 
into the design of a system to achieve a goal such as enhancing performance or efficiency; 
maintaining desirable behavioral traits, such as robustness; or responding to changes in the 
system or its environment. Research supported by Eurocontrol investigated an NN-based system 
for automatic recognition and diagnosis of safety-critical, non-nominal events in ATM for 
improving safety monitoring for the Single European Sky ATM Research  initiative [4]. 
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Adaptive systems learn as they execute, thereby exhibiting behavior that can be less predictable 
than traditional avionics systems. Because requirements for system safety assurance are based on 
the concept that correct behavior of a system can be specified, predicted, and verified, any use of 
adaptive systems in civil applications poses challenges in assuring safety by means of traditional 
safety assurance methods and procedures. This includes understanding the impact of adaptation 
on system requirements and design and software implementation and verification, because 
adaptation is ultimately realized through software. 
 
The primary aim of the Verification of Adaptive Systems task was to develop an understanding 
of the ramifications of adaptive systems on software assurance. The task also aimed, to the extent 
it was possible, to develop a rational and practical approach for the assurance of flight software 
that uses adaptive techniques, potentially including approaches targeted at the system level. This 
report documents the results of the two phases of research activity to accomplish those aims. 
 
1.1  OVERVIEW OF PHASE 1 ACTIVITIES 

Work on Phase 1 was performed by NASA Langley Research Center. Phase 1 research focused 
on developing an understanding of the state-of-the-art in adaptive systems technology, especially 
machine learning, and how adaptive technology is used or proposed to be used in aviation 
applications, including controls. The following four objectives were defined for Phase 1: 
 
Objective 1: Provide definitions of terminology associated with verifying adaptive systems in a 

safety-critical airborne environment (e.g., adaptive system, NN, adaptive 
software, AI, and deterministic). 

Objective 2:  Describe contrasting characteristics of adaptive systems and deterministic 
systems, including relative benefits, strengths, and weaknesses. 

Objective 3: Investigate the differences between an adaptive approach to system development 
and a deterministic approach, and their effects on system and software 
verification. 

Objective 4:  Identify safety issues when an adaptive, nondeterministic system approach is used 
and propose mitigation techniques to address these in a safety-critical airborne 
environment. 

 
The intent of Phase 1 was to lay the groundwork necessary to identify the differences between 
conventional and adaptive systems from both a requirements and design perspective, and 
subsequently identify any unique software safety considerations that would not be addressed 
using existing assurance processes, especially DO-178B [5]. Much of the Phase 1 effort involved 
gathering information about machine learning and the current uses of adaptive systems in 
industry, and trying to develop a cogent terminology set associated with the use of machine 
learning in aviation applications. 
 
Sections 2–6 of this report document the results of the Phase 1 effort. Section 2 provides an 
overview of terminology issues for adaptive systems. Appendix A lists terms and definitions 
relevant to adaptive systems. Section 3 describes fundamental aspects of adaptive approaches, 
including strengths and weaknesses, with special emphasis on feedback processes. In section 4, 
adaptive algorithms are discussed, including NNs, genetic algorithms, and reflective 
programming. Section 5 presents different approaches to adaptive control. Section 6 then 
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provides an initial assessment of safety issues for adaptive systems. Section 7 contains a 
summary of the Phase 1 work in preparation for Phase 2. Appendix B provides the results of the 
literature search as a bibliography. 
 
1.2  OVERVIEW OF PHASE 2 ACTIVITIES 

Work in Phase 2 was performed by Honeywell International Inc. The Honeywell team started 
with the foundational work in Phase 1, then focused Phase 2 activities on determining the extent 
to which existing guidance in RTCA/DO-178B/C1 and associated supplements can provide the 
basis for the assurance of adaptive systems, for which additional or alternate objectives and 
activities might be necessary, and recommendations for additional research. Phase 2 objectives 
were to: 
 
Objective 5:  Maximize the current use of DO-178B/C. Where aspects of adaptive systems 

cannot be approved using DO-178B/C, provide recommendations for alternate 
methods to be considered, including the viability of these methods using current 
technology or as areas where additional research may be necessary. 

 
Objective 6:  Make recommendations for the safe use of adaptive systems, especially those 

being planned for use in NextGen and National Airspace System (NAS) air traffic 
control. 

 
Objective 7:  Provide effective outputs that can be used by the FAA for the development of 

policy, guidance, and training. 
 
Sections 7–12 of this report document the results of Honeywell's support for Phase 2. Section 7 
provides a transition from Phase 1 activities to Phase 2, including a helpful taxonomy of adaptive 
systems, based on the different adaptive system types and architectures. Section 8 provides an 
overview of current certification guidance and standards, including those for system safety and 
design assurance. Section 9 enumerates and demonstrates concerns about the feasibility of 
applying DO-178B/C to adaptive systems through the analysis of the objectives against a 
particular adaptive system. That analysis shows the implications of adaptation on activities and 
objectives at the system level. Next, section 10 touches on aspects of tool qualification for 
adaptive systems. Section 11 contains the recommendations for adaptive system safety, and 
section 12 identifies some continuing research needs. 
 
The report concludes with a brief summary of the research effort. 
 
2.  TERMINOLOGY 

As with many technologies, especially those with application in many diverse domains, there 
often lacks a standard vernacular used consistently across those domains. This is certainly the 

1  During the course of this task, the DO-178B document was updated to DO-178C [6], and four supplementary documents (covering  
object-oriented technology, model-based development, formal methods, and tool qualification) were approved by the RTCA Inc. Phase 2 
activities considered the changes to those documents in the course of the research. The term DO-178B/C indicates that consideration. 
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case with adaptive systems. Work on this task started with an effort to define terminology 
associated with adaptive systems, including terms such as “adaptive system”, “neural network”, 
“adaptive software”, “artificial intelligence”, and “deterministic”. It did not take long to realize 
that the terms often used when discussing adaptive systems in the aviation domain do not reflect 
the latest technology current in machine learning. Consequently, the simple task of defining 
terminology evolved into an effort to explore and understand the burgeoning world of machine 
learning and its applicability to aviation applications. 
 
Throughout this research effort, a list of relevant terms and definitions were compiled while 
reviewing source material obtained through a broad literature search. The literature search for 
this effort culminated in over 206 references, including textbooks; conference proceedings; 
journal publications; standards and guidelines; industry papers; academic sites; and other online 
resources. Appendix A contains a list of terms and definitions, and appendix B lists the results of 
the literature search in a bibliography. 
 
A few additional terms and definitions provide the context for the remainder of this report. The 
first term is “adaptive system”. For this study, an adaptive system is one in which the behavior 
changes in response to an active feedback process to achieve a goal in the presence of changes in 
the system environment. That environment might be the computational environment, including 
the components of the computing platform, such as middleware, or might be the physical or 
external system in which the computer program operates. For airborne systems, changes to the 
environment might include change to the physical structure of the aircraft or change in the 
weather. 
 
Behavior change, in response to an adaptive technique such as an NN, is not intended to imply 
behavior change only when the system is operating in service. Behavior changes might be 
explored during the design phase of a system, in which an adaptive algorithm is used to help 
define the behavior of a system. In this case, at the end of the system design phase, the design 
can be fixed such that the feedback mechanism is no longer needed and the behavior does not 
adapt in real-time operation of that software. In other cases, the behavior change from the 
feedback of an adaptive system may take place on a continuous basis in real-time operation 
(referred to as a fully adaptive system), or only periodically (referred to as a partially adaptive 
system). 
 
The definition of adaptive system used in this report does not include the term “deterministic” or 
its complement “nondeterministic”—terms that are often used to attempt to distinguish between 
a system that adapts and one that does not. In appendix A, a deterministic system is defined as 
one in which no randomness is involved in the development of future states of the system. Given 
the same input, the future state of a deterministic system can be precisely determined or 
predicted from knowledge of an initial system state and a predictable sequence of intermediate 
states. In theory, determinism precludes the existence of randomness that influences the 
intermediate states. A system influenced by random processes would be nondeterministic, 
because the future state of the system cannot be uniquely predicted from a defined sequence of 
intermediate states. 
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In practice, all physical systems have random processes or uncertainties at some level. For 
example, there is likely to be noise in system electronics or in sensor data used within the 
system. Being predictable does not necessarily imply that a deterministic system is free from any 
random processes or other uncertainties; rather, the implication is that these factors do not cause 
appreciable variations in the observed behavior of the system. Depending on the internal system 
processes (such as filters applied to the sensor data), these effects may not be detectable at the 
system interface, or their impact on the system behavior may be negligible. For example, 
consider the case of multithreaded programs [7]: 

Non-determinism, inherent in threaded applications, causes significant challenges 
for parallel programmers by hindering their ability to create parallel applications 
with repeatable results… 

Application developers rely heavily on the fact that given the same input, a 
program will produce the same output. Sequential programs, by construction, 
typically provide this desirable property of deterministic execution. However, in 
shared memory multithreaded programs, deterministic behavior is not inherent. 
When executed, such applications can experience one of many possible 
interleavings of memory accesses to shared data. As a result, multithreaded 
programs will often execute non-deterministically following different internal 
states that can sometimes lead to different outputs. 

In this case, threaded programs can be considered deterministic if the uncertainties associated 
with concurrency issues are properly considered in the software design. Though the exact central 
processing unit cycle occupied by a particular floating point operation may vary dramatically 
frame to frame, the important factor for deterministic behavior will likely be that the entire 
computation is complete before the frame deadline. 

For adaptive systems, the output may be deterministic or nondeterministic, depending on where 
and how the feedback process is used. Because the terms “deterministic” and “nondeterministic” 
are complex, those terms are not used in the remainder of this report. The issues of concern with 
respect to software assurance are related to having sufficient understanding, predictability, and 
verification of the effect of the adaptation; therefore, this report focuses on understanding that 
process. 
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3.  UNDERSTANDING ADAPTIVE APPROACHES 

There are many dimensions to adaptive systems. According to McCormick [8], “adaptive 
systems can be characterized by how aggressively they attempt to adapt to the unexpected. In the 
simplest case, adaptive systems behave like a complex curve-fitting or pattern-matching 
mechanism. In more complex cases, they are designed to learn continuously from their 
environments.” The following four factors are important to understanding adaptive approaches 
from this perspective, and understanding the issues relevant to assurance of systems using these 
approaches: 
 
1. The feedback process. 
2. The system life cycle context where adaptation is actively used. 
3. How learning takes place. 
4. The role of the adaptive approach. 
 
3.1  THE FEEDBACK PROCESS 

The working definition for adaptation includes an active feedback process to modify behavior 
towards a goal. The notion of active feedback provides a primary distinction between what is 
truly an adaptive process and a process for which the response is preconfigured. For instance, an 
onboard process may select a set of parameters through a table lookup function based on 
airspeed and ambient temperature. The behavior of the supported process changes as new 
parameters are pulled from the table and used in calculations; however, the change in behavior is 
driven only by the variables used in selecting parameters that were preconfigured through a 
priori analysis. 
 
An adaptive system, on the other hand, essentially performs in situ design iterations by 
monitoring the performance of the system against performance goals and making incremental 
changes in its parameters until a reasonably optimal configuration is achieved. These updates are 
generated based on the actual response of the system and not solely on design assumptions and 
anticipated environmental conditions made in a priori analysis. In this case, the active feedback 
process can respond to unanticipated events or conditions, resulting in systems that may be more 
efficient or robust than their nonadaptive counterparts. 
 
Given the importance of an active feedback process in identifying a system as adaptive, it is 
helpful to take a more extensive look at feedback loops. In reference 9, four elements of 
feedback processes are defined explicitly (see figure 1). 
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Figure 1. Elements of the feedback process 

Discussing active feedback in terms of these four elements provides a way to contrast between 
adaptive systems and nonadaptive systems. Nonadaptive systems have predetermined actions 
that are based on a priori analysis of the assumed system characteristic operating in an assumed 
environment. Consequently, the “decide” element for a nonadaptive system would select a 
predefined response based on the conditions determined by “collect” and “analyze.” Conversely, 
an adaptive process actively refines parameters and then evaluates their influence on 
performance through the subsequent collection and analysis elements. That is, adaptive systems 
include active refinement of parameters through the feedback process, whereas nonadaptive 
systems use either fixed parameters or parameters that are passively selected from a 
preconfigured set. 
 
Certain strengths and weaknesses of adaptive systems, as compared with conventional systems, 
can be identified from the perspective in figure 1. The primary strength of adaptive systems is 
their capacity to refine their behavior based on actual in situ experience, rather than assumed 
system or environmental properties. For conventional systems, design assumptions are typically 
conservative to ensure that the system is robust against uncertainties; this will often lead to 
suboptimal performance because the system design is a compromise over a range of conditions, 
rather than optimized for a specific operating point. Therefore, the conventional tradeoff between 
robustness and performance is partially eliminated through the use of a system that adapts in 
operation because it can be both robust to changes in the system or its environment and 
optimized for performance in its current conditions. 
 
Though adaptation in response to feedback offers attractive benefits, it does come with some 
weaknesses that are cause for concern. Convergence of the active feedback process is one such 
concern that must be evaluated carefully. Of particular concern is whether the active feedback 
process can find a globally optimal solution (that is, find the best solution out of all possible 
candidates) within a time span that does not compromise system safety. This often becomes a 
trade-off between time-to-convergence and achieving a globally-optimal solution, and this trade-
off has been the focus of a substantial amount of adaptive systems research. 
 

Decide

Act

Collect

Analyze
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A second related concern, which is also relevant to the active feedback path, is whether the 
analysis and decision elements of the feedback process are focusing on the correct features 
within the feedback signal. For example, it is possible to focus the adaptation on noise rather 
than on the underlying signal that represents the true dynamics of the system, without sufficient 
attention to mitigations to prevent this. 
 
Finally, one strength of a conventional approach is that the critical performance parameters of 
the system can be predicted (to some degree) for any given system configuration and 
environmental condition, whereas the performance of an adaptive system can only be predicted if 
the learning history of the system is known. 
 
3.2  LIFE CYCLE CONTEXT 

Identifying where the adaptation occurs in the system life-cycle is an important aspect of 
adaptive systems. Adaptive systems can be divided into those that use adaptive approaches for 
development only, typically to mature a design, and those for which the active feedback system 
is active in real-time operation. 
 
One benefit of using an adaptive approach during the design phase is that a detailed 
understanding of the underlying physical process may not be necessary for the adaptive approach 
to converge on an acceptable design solution. For example, if data is available to describe the 
intended input/output behavior of a complex interaction, it may be feasible to train an NN to 
replicate this behavior to a specified accuracy. In this case, a mathematical model of the 
underlying process, based on principles of physics, thermodynamics, or other disciplines, does 
not need to be derived. One of the major strengths of this approach is that it provides a means for 
developing representations of complex systems for which derivation of a mathematical model by 
hand may be prohibitively difficult or impossible. 
 
By the same token, using an adaptive approach during the design phase may circumvent the need 
for a detailed understanding of an underlying process. This is a weakness because the outcome of 
the underlying process becomes encoded in the input and output data used to train the adaptive 
process, and the structure of the NN algorithm that is trained on this data bears little to no 
resemblance to the actual process being modeled. This leads to a lack of traceability between the 
resulting algorithmic design and the underlying process being modeled. Additionally, it 
underscores the necessity that the intended behavior be fully captured within the data used to 
train the adaptive system as part of development. 
 
3.3  LEARNING METHOD 

Many of the adaptive approaches identified in this study fall under the auspices of machine 
learning techniques. Machine learning is a branch of AI concerned with the development of 
algorithms that allow computers to evolve behaviors based on observing and making statistical 
inferences about data. A major focus of machine learning research is to automatically recognize 
(learn or be trained to recognize) complex patterns and make intelligent decisions based on data. 
As the computational power of computers has increased, so has the ability of algorithms to 
evaluate large amounts of data to automatically recognize complex patterns, to distinguish 
between exemplars based on their different patterns, and to make predictions. Many advances in 
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adaptive control algorithms, for example, are based on the ability to rapidly process data 
representing the aircraft’s environment and make similarly rapid changes in parameters intended 
to maintain stability when that environment changes unexpectedly. 

Learning is accomplished through inductive inference—that is, making predictions based on 
observations. These predictions are based on the observation of data that represents incomplete 
information about statistical phenomenon and generalizing it into rules and making predictions 
of missing attributes or future data. The process of learning from observations is often 
characterized by three different types of learning: supervised, unsupervised, and reinforcement 
learning: 

• Supervised learning (or learning by example) is done with predetermined sets of data
representing input and response relations. The machine learning algorithm generates a
model in terms of a mathematical function of the relationship between input data and
response based on the predetermined training. This model can be used to predict the
response to input that was not included in the training data. Training data typically
consists of examples in the form of an input value or values paired with a desired output.

• Supervised learning can also occur in an operational context if a model is provided that
can describe the desired system response. Comparing the desired against the actual
response provides a means for measuring the performance of the adaptive system. Using
this performance measure in an active feedback loop provides a way for the adaptive
system to perform supervised learning while in operations.

• Unsupervised learning applies statistical techniques to identify non-obvious relationships
within the data. With this approach, the learning algorithm is not given any target
information to guide it nor is the algorithm given feedback based on previous decisions or
actions. In a sense, unsupervised learning can be thought of as finding patterns in the data
beyond what would be considered pure unstructured noise.

• Reinforcement learning involves mapping situations to actions to maximize a cumulative
reward obtained through a number of intermediate actions. Reinforcement learning is
often called “learning from experience” or “learning through interaction.” The learner is
not told which actions to take, as in supervised learning, but instead must discover which
intermediate actions yield the best results. In the most interesting and challenging cases,
actions may affect not only the immediate reward, but also the next situation and, through
that, all subsequent rewards. These two characteristics—trial-and-error search and
delayed reward—are often referred to as “exploration” and “exploitation” and are the two
most important distinguishing features of reinforcement learning.

In general, of the three types of learning methods, supervised learning poses the fewest 
challenges with respect to verification. 
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3.4  ROLE OF ADAPTATION 

Machine learning algorithms that enable adaptation are statistics-based algorithms designed to 
identify complex patterns and make decisions based on data. The statistical task generally has 
one of four purposes, associated with different application domains, as shown in table 1: 
 
• Regression: Many application domains, such as controls or sensor processing, require an 

accurate mathematical relationship of the physical system, its environment, or some 
process within the system. When the exact relationship is unknown, a conservative 
representation is often used because of uncertainties or approximations that are necessary 
to reduce the complexity of the mathematical relationship to a reasonable level. In other 
instances, the process, system, or environment is too complex for a mathematical 
expression to be derived from physical principles associated with dynamics, 
thermodynamics, or other related disciplines. Adaptive techniques such as NNs provide a 
way for an accurate mathematical relationship to be generated from heuristic data: 
representative input/output data is processed using statistical methods to converge on a 
mathematical representation of the data. The resulting algorithm can then be fixed if it is 
developed exclusively as part of the design process, or the adaptive process can continue 
to refine the representation in operations. Continuous models developed using regression 
analysis are often used in adaptive controls and parameter estimation applications. 
Typically, this involves the use of supervised learning. 

 
• Classification: Classification is closely associated with regression; however, the statistical 

methods used for classification seek to place each input data item into one of a finite set 
of possible outcomes. Statistical methods used for classification produce discrete models 
that categorize the results, whereas regression analysis produces continuous models. 
Some statistical methods used for classification generate new classes if a suitable match 
is not found for a given input. In other approaches, the set of possible outcomes is fixed 
in advance. 

 
Classification can be used for situational awareness in which inputs are classified 
according to features relevant to the monitor. Classification can also be used for pattern 
recognition, such as image processing, where a best match is selected from an image 
database on which the adaptive approach is trained. Classification typically involves 
supervised learning, but can also include unsupervised learning for instances in which the 
adaptive system is allowed to generate new classifications. 

 
• Clustering: Clustering analysis assigns a set of objects into groups, called clusters, so that 

the objects in the same cluster are more similar, in some sense or another, to each other 
than to those in other clusters. Clustering is a statistical technique that is particularly 
powerful in identifying relationships in the data that are not otherwise obvious through 
conventional methods of data analysis. Clustering is often used as a data post-processing 
technique to identify trends or indicators. Some forms of clustering are applicable to in 
situ, real-time health monitoring environments in which they may be able to identify 
precursors to adverse conditions. Clustering generally uses unsupervised learning. 
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• Optimization: Optimization is a statistical method that seeks to identify the best solution
to a given goal, while taking into account constraints on the solution. These solutions
typically involve a number of intermediate actions, and the optimization method uses a
balance between exploration of possible intermediate actions and exploitation of
intermediate actions that contribute to the optimal overall solution. Optimization typically
uses reinforcement learning in developing solutions and is particularly well-suited for
such applications as path planning and trajectory analysis.

Table 1. Role of statistical techniques and representative applications 

Role Definition Applications 
Regression Identifies mathematical relationships 

among variables 
• Adaptive Controls
• Continuous Models
• Parameter Estimation

Classification Classifies input data into one of a 
number of discrete classes 

• Monitoring
• Situational Awareness

Clustering Identifies similarities between features 
of the data and groups similar data items 
into clusters with similar features 

• Monitoring
• Situational Awareness
• Data Post-Processing

Optimization The selection of a “best” element from a 
set of available alternatives 

• Planning
• Path/Trajectory Analysis

4. USE OF ADAPTIVE ALGORITHMS AND THEIR ROLE IN ADAPTIVE SYSTEMS’
EVALUATION 

This section discusses some of the more common approaches or types of algorithms used to 
implement the statistical analyses used for an adaptive system. 

4.1  NNS 

Of the myriad approaches used to enable a system to adapt, NNs are likely the most prevalent 
and well known. An NN, or artificial neural network (ANN), is a mathematical model, inspired 
by the structure of biological NNs that processes information through an interconnected group of 
nodes called neurons. In practical terms, NNs are nonlinear statistical analysis or decision-
making tools. They can be used to model complex relationships between inputs and outputs or to 
find patterns in data. NNs can be constructed using supervised, unsupervised, or reinforcement 
learning. 

4.1.1  Fundamental Concepts in NNs 

All ANNs shares some common terminology and features; however, the wide variety of 
specialized configurations and features preclude an exhaustive coverage of all ANN terminology 
in this paper. This section cites glossary definitions mostly from references 10 and 11 as 
representative of definitions consistent with all sources reviewed as part of the literature search. 
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A neuron is a basic computation element of the NN [11], consisting of a weighted sum of input 
connections, passed through an activation function (also called a threshold function), that is 
typically nonlinear, such as a hyperbolic tangent or another sigmoid (S-shaped) function, as 
shown in figure 2 [12]. 
 

 

Figure 2. Model of a neuron 

The adaptive feedback process for ANNs refines each weight, defined as the “numerical values 
attached to specific neuron inputs to indicate significance” [11]. 
 
The topology of the ANN, which is the manner and organization in which the neurons are 
connected together [11], varies significantly for different types of ANNs; however, a common 
form contains an input layer of neurons (f1 through f3 in figure 3, taken from reference 13), one 
or more hidden layers (f4 and f5), and an output layer (f6). 
 

 

Figure 3. NN topology 

The number of neurons in the input layer corresponds to the number of inputs to the system. 
Though linear systems require the inputs to be linearly independent, this restriction is not placed 
on NNs, which makes them attractive for systems with data sources that may be related. 
Similarly, the number of outputs is not restricted to one. 
 
The topology represented above is a feedforward network, defined as “a network in which signal 
paths can never return to the same signal node” [14]. This is in contrast to a feedback network, 
defined as “a network in which signal paths can return to the same signal node” [14], which 
would be represented in figure 3 by right-to-left signal arrows between neurons; this implies a 
temporal dependence of the network on its previous states, whereas a feedforward network has 
no such state dependency and is a function only of its current inputs. Feedforward networks are 
prevalent in the literature discussing the application of ANNs to safety-critical systems, with the 
above topology usually identified as a multilayer perceptron. 
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Many applications of this topology include only one hidden layer, with the number of neurons in 
the layer driven by the intrinsic characteristics of the phenomenon the ANN is intended to 
approximate. Initial observations about the phenomenon are provided to the ANN through 
training using training data, sometimes referred to as the training set. 
 
Training data consists of input and desired output data pairs used to train the system. This data 
allows the NN to learn the appropriate response to predefined stimuli [10, 11] by adjusting 
certain parameters. 

Note that a data pair does not imply single input/single output training data—the pair would 
instead consist of an input vector and an associated output vector. A useful delineation between 
training and learning is: 
 
• Learning—The modification of an NN’s behavior in response to its environment [11]. 

• Training—Learning using preoperation knowledge that defines the appropriate response 
to predefined stimuli. 

For ANNs, the primary distinction between training and learning in general is the context. 
Training encompasses learning that occurs outside of an operational context in a controlled 
environment (such as during system development), whereas, in general, learning may also occur 
during operation. This distinction will serve as a primary discriminator in the following 
discussion of the use of ANNs in a safety-critical system; concerns regarding ANNs that are 
trained during development and then fixed (no additional learning occurs during operations) vary 
significantly from concerns regarding the use of ANNs that continue to learn during operations 
(dynamic). 
 
In feedforward networks, the common approach to learning is through the use of a  
back-propagation scheme. In simple terms, once the network has processed the input from the 
training data, the network looks at the difference between the network’s response and the 
expected response and then the weights associated with the nodes of the network are adjusted by 
working backwards through the network. 
 
Though there are numerous variations, back-propagation typically involves a gradient descent 
learning rule that influences the adjustment of the network weights in the direction of the 
steepest error gradient, as shown in figure 4. 
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Figure 4. Gradient descent learning rules 

In figure 4(A), starting at point 1, the gradient descent rule implies that the weights are adjusted 
so that the response of the system is influenced towards point 2. At the subsequent application of 
the same training data, the gradient at point 2 will influence the response in the same direction, 
resulting in an overshoot of the global minimum shown in the figure as a solid dot. The gradient 
descent at point 3 would then influence the solution back towards the global minimum, with the 
magnitude of the gradient influencing the step size. This repeats until the process converges on 
the global minimum error within an acceptable tolerance. Figure 4(B) shows the common 
concern that learning converges on a local minimum, resulting in significantly higher training 
error then would be achieved at the global minimum. Sophisticated back-propagation schemes 
have been developed to improve the speed of convergence on a global minimum error and avoid 
convergence to a local minimum error. 
 
4.1.2  Example Application of an NN 

Work performed by Goodrich and Barron Associates in applying an NN to an in-flight fuel 
measurement system provides a good example of the use of an NN in an airborne application 
[15, 16]. 
 
The conventional approach to a fuel measurement system involves the development of a  
multi-dimensional lookup table that maps fuel sensor signals to fuel levels. Because of the shape 
of the fuel tanks and nonlinearities of the sensors, it is not analytically feasible to develop a 
mathematical expression for this nonlinear estimation problem. Instead, nonlinear data is 
generated by a complex high-fidelity model of the fuel system and tabularized into a form that 
can be indexed by a table lookup software function. 
 
The table resulting from this approach requires a very large memory footprint. Furthermore, this 
approach requires each sensor input to be treated as an independent degree of freedom (a 
separate table dimension) when in actuality significant coupling may exist between sensors that 
can be exploited to generate more accurate measurements. These two reasons motivated research 
into using an NN to represent the mapping between sensor data and fuel measurements. 
 
Figure 5 shows a comparison between the conventional approach and the NN approach. 
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Figure 5. Comparison of fuel measurement system approaches 

The NN approach used the data from the same high-fidelity model used to develop the table data 
to generate training data for a feed-forward NN. Goodrich and Barron Associates developed 
techniques to monitor the back-propagation training of the NN against verification data to ensure 
that the training converged on a solution that matched the required behavior to an acceptable 
accuracy. Additionally, analytical methods were developed to guarantee that the nonlinearities in 
the resulting network were bounded to an acceptable level. Once trained, the NN was fixed, and 
the resulting static network algorithm represented the algorithm that would be implemented in 
software. 
 
The following is a brief summary of the four factors discussed in section 3 as applied to this 
example: 
 
1. Feedback Process: The active feedback path is used during network training in a 

controlled environment using data from the high-fidelity model. The backpropagation 
process refines network weights based on the difference between the output defined in 
the training data and the actual network output, known as network error. Network error 
continues to be fed back to the backpropagation process through subsequent iterations 
until the network error is reduced to an acceptable threshold across all inputs, at which 
point the feedback is disabled and the network configuration fixed. 

 
2.  Life Cycle Context: The NN training occurs during development only and is fixed for 

operation. 
 
3.  Learning Method: Supervised training is used to train the network with data generated 

from the high-fidelity model. 
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4.  Role of Adaptation: The statistical analysis method is regression analysis between the 
input (sensors) and output (fuel measurement). This is a nonlinear, continuous model of 
the process. 

 
The NN approach compares to the conventional table-lookup approach for fuel measurement as 
follows: 
 
• Training through the backpropagation resulted in a compact algorithmic representation of 

the fuel management system when no analytical solution could be derived through 
conventional means. This resulted in a representation that required far fewer 
computational resources than the conventional approach. 

 
• Specific analysis was necessary to verify that all nonlinearities within the network were 

suitably bounded and would not result in unintended network behavior. 
 
• Because the network was fixed for operations, the concerns regarding its use in 

operations are much the same as would be expressed for a conventional approach 
(assuming that the nonlinear nature of the algorithm has been thoroughly reviewed). 

 
• The use of supervised training provided the means to quantify the network error and 

establish that the network error met an acceptable tolerance across the input space. 
Verification data, independent of the training data, was used to verify that network was 
not overtrained. Note that the use of supervised training requires verification that all 
intended functionality is completely expressed within the training data. 

 
4.1.3  Observations Concerning NNs 

A strong appeal of NNs is that they can be trained to represent nonlinear relationships. 
Nonlinearity is also the source of many of the concerns with the use of NNs. Discontinuities, 
regions of the data that are highly nonlinear, and the presence of a significant number of 
inflections may indicate that (a) training may be difficult, and (b) the ANN topology may be 
inordinately complex. Accordingly, verification that the nonlinearities in the network are well 
behaved and bounded is a critical verification task. In addition, if an NN is adaptive in operation, 
specific consideration must be given to the integrity of the convergence of the training and the 
stability of the network in general. Finally, because the training is encoded in the network 
through the refinement of the neuron weights, the relationship between the network structure and 
the process that the network represents is often difficult or impossible to ascertain analytically. In 
other words, traceability between the network and the requirements addressed by the network 
often cannot be evaluated by inspection; it is only through demonstrating that the network 
behavior is representative of the specified behavior that the traceability can be established. 
 
4.2  GENETIC ALGORITHMS 

A genetic algorithm is a stochastic search method that mimics the process of natural selection 
and the resulting changes in genetic composition. Whereas most stochastic search methods 
operate on a single solution to the problem at hand, genetic algorithms operate on a population of 
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solutions. Genetic algorithms are often used to generate useful solutions to optimization and 
search problems. To use a genetic algorithm, one must encode solutions to a problem in a 
structure that can be stored in the computer. This object is called a genome (or chromosome). 
The genetic algorithm creates a population of genomes and then applies evolutionary operations 
to the individuals in the population to generate new individuals. It uses various selection criteria 
so that it picks the best individuals for further evolution. 
 
Genetic programming is a specialization of genetic algorithms in which each individual genome 
is a computer program. It is used to optimize a population of computer programs according to a 
fitness landscape determined by a program’s ability to perform a given computational task. 
Genetic programming evolves a population of computer programs; that is, generation to 
generation, genetic programming stochastically transforms populations of programs into new, 
hopefully better, populations of programs. 
 
A generic algorithm for genetic algorithms is as follows: 

• Randomly create an initial population of genomes representing a valid solution 
• REPEAT 

 
− Analyze the population to ascertain their fitness 
− Select one or two from the population with a probability based on fitness to 

participate in genetic operations 
− Create new individuals by applying genetic operations with specified probabilities 

 
• UNTIL an acceptable solution is found or another stopping condition is met 
• RETURN the selected member of the population 
 
Genetic programming, like nature, is a random process, and it can never guarantee results. As 
such, the likelihood that this particular approach for an adaptive system would be considered for 
use in a civil airborne application is extremely small. 
 
4.3  REFLECTION/AUTONOMIC COMPUTING 

In computer science, reflection is the process by which a computer program can observe and 
modify its own structure and behavior at runtime. Reflective/autonomic computing is 
computation carried out on data representing the state of an executing system’s hardware, 
software components, and their interactions. This is typically accomplished by dynamically 
assigning program code at runtime. Self-adaptive reflective middleware uses reflective 
computation to adapt its behavior in response to evolving conditions such as system 
performance. For instance, a single node might alter the thread schedule for high-demand 
services, a distributed computing system might replicate services that are under high demand to 
multiple nodes, or a particular protocol may be selected based on monitoring network traffic. 
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4.4  SUPPORTING TECHNOLOGIES 

Two additional technologies, fuzzy logic and expert systems, are mentioned here to supplement 
the algorithms described above. These technologies are not adaptive; that is, they do not have a 
feedback loop: 

1. Fuzzy Logic: This is a form of many-valued logic derived from fuzzy set theory to deal
with reasoning that is fluid or approximate rather than fixed and exact. Fuzzy logic is a
superset of conventional (Boolean) logic that has been extended to handle the concept of
partial truth, in which the truth value may range between completely true and completely
false. Fuzzy logic was developed for complex control systems in which mathematical
models were difficult or impossible to create, such as in highly nonlinear systems. It has
been evaluated for use in a variety of control applications, including flight controls [3 and
17]. Fuzzy logic can be combined with an NN to produce an adaptive fuzzy control
system.

2. Expert Systems: This is a computer-based system design to emulate the problem-solving
behavior of a human expert [3]. An expert system usually is comprised of a rule base and
an inference engine that cooperate to simulate the reasoning process that a human expert
pursues in analyzing a problem and arriving at a conclusion. An expert system can be
made adaptive if an adaptive technology is used to refine the inference weights based on
feedback from the user.

5. ADAPTIVE CONTROLS AND THEIR USE IN ADAPTIVE SYSTEMS

This section provides an overview of adaptive controls that is separate from a discussion of the 
other adaptive technologies because of the distinct use of feedback for control systems. A 
summary of concepts and terms relevant to control systems is provided first, followed by a 
discussion of conventional and adaptive controls. Then, representative adaptive control system 
architectures are discussed to illustrate the variety of adaptive control approaches. 

The field of adaptive controls is extremely wide, and this section provides only a short overview 
of a few representative approaches. Note that other adaptive mechanisms, such as NNs, may be 
used to provide the adaptivity within the control system. Accordingly, this section focuses on the 
general concept of adaptive controls, rather than the specific form of the adaptive mechanisms 
used within the control system. 

5.1  CONTROL SYSTEM OVERVIEW 

A control system is the combination of, at a minimum, a controller connected to the physical 
system being controlled. A closed loop control system (shown in figure 6) is formed by 
connections between an externally provided command (“Cmd”); the controller and the 
actuator(s) of the physical system; and the feedback from the sensor(s) of the physical system to 
the controller. The controller feedback provides measured aspects of the physical response, such 
as rates or positions, depending on the type of sensors used in the feedback path. 
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Figure 6. Closed loop control system 

5.1.1  Controllability/Observability 

Controllability and observability are two important properties associated with the physical 
system and the interfaces between the physical system and the controller. Whereas both 
properties can be expressed mathematically, the fundamental concepts behind them are as 
follows: 
 
• Controllability is related to the possibility of placing the physical system into a particular 

state by using an appropriate control signal. If a state is not controllable, then no 
controller signal will ever be able to control the state. If a state is not controllable, but its 
dynamics are stable, then the state is termed stabilizable. 

 
• Observability is related to the possibility of observing, through output measurements, the 

state of a system. If a state is not observable, the controller will never be able to 
determine the behavior of an unobservable state and, therefore, cannot use that state to 
stabilize the system. 

 
Note that both definitions use the concept of state. State is often expressed mathematically, but 
the concept of state can be thought of informally as a snapshot of the dynamic (time-varying) 
properties of the system under discussion. 
 
Controllability and observability are important not only from a conventional design perspective, 
but also in the way in which they limit what can be accomplished through the use of adaptive 
control techniques if the characteristics of the physical system change during operation. For 
example, a state may become uncontrollable because of an actuator failure or a state may become 
unobservable because of a sensor failure. Either case may significantly restrict the feasibility or 
effectiveness of an adaptive control technique. 
 
5.1.2  Stability 

The definitions for controllability and observability address their impact on the capacity of a 
controller to stabilize the system. Stability also has various mathematical definitions, which, for 
linear systems (systems for which the output is proportional to the input) are typically expressed 
in terms of gain and phase margins in the context of frequency-domain analysis.  
Frequency-domain analysis evaluates the control system behavior based on the frequency 
content of an input signal. Conversely, time-domain analysis focuses on the actual dynamic 
response of the system. 

Controller Physical System
ResponseCmd

Controller Feedback
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5.1.3  Robustness 

The robustness of a control system is defined as the quality of maintaining designed controller 
stability and performance properties in the presence of uncertainties in the system or unmodeled 
disturbances. Gain and phase margins provide a standard approach for ensuring robustness for 
linear systems. Robustness can be evaluated in frequency-domain analysis by confirming that 
positive stability margins remain for small variations in dynamics or modeling assumptions. This 
analysis covers both independent and coupled variations. Robustness analysis is then extended 
into time-domain analysis where additional effects are included, such as system nonlinearities for 
which stability impacts were approximated through linearization in frequency-domain analysis. 
 
5.1.4  Robustness of Non-Adaptive Control Systems 

For a non-adaptive control system, controller parameters such as gains and filter coefficients are 
determined during design and then fixed for operations. As a result, the controller design is based 
on a priori knowledge and assumptions regarding the dynamics of the physical system operating 
in its environment. Performance and robustness of the control system may degrade if the actual 
dynamics of the physical system, or the actual environment, do not match what was assumed 
while developing the controller. 
 
Non-adaptive control design methods result in a fixed controller for a design point defined by a 
specific physical system operating in a specific environment. Some methods, such as robust 
control theory, account for uncertainties and disturbances within the physical system as part of 
the design methodology. These methods still result in a fixed controller, albeit one with more 
robust characteristics than what might result from more classical design methods. Additional 
analysis can assess the robustness of the control system by varying the properties of the physical 
system or the environment away from this design point. 
 
For many application domains, such as aircraft flight controls, multiple design points can be used 
to maintain robustness across the range of operations. Frequently, the same controller 
architecture can be used across the design points, with the only variations being in controller 
parameters such as gains and filter coefficients required to tune the controller for each point. For 
these situations, a gain scheduling approach can be used to select the correct set of parameters 
based on look-up tables generated during design, as shown in figure 7. Note that the shaded area 
in figure 7 and subsequent figures represents the structure of the conventional control system 
shown. This does not imply that the controller in the shaded area remains unchanged from the 
one shown in figure 6; instead, it is intended to show the evolution of various control system 
approaches away from the conventional baseline. In this instance, the structure of the controller 
is fixed, but the parameter values used within the controller are passed in from the gain schedule 
tables. Note also that the sensor/actuator dynamics are assumed, for the sake of simplicity, to be 
part of the physical system. 
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Figure 7. Control system with gain scheduling 

5.1.5  Robustness of Adaptive Control 

This discussion provides a primary delineation between what is considered to be adaptive and 
what is considered to be non-adaptive, for the purposes of this study: 

• An adaptive approach uses real-time, in situ feedback of the control system performance
to refine controller parameters.

• A non-adaptive approach uses a priori analysis to design a controller for a specific
operating point.

Note that the non-adaptive approach is not refining parameters based on performance; it is 
merely indexing parameters that have been configured through a priori design analysis. Based on 
this discussion, adaptive controls may provide increased robustness by providing the means to 
refine controller parameters in situ based on the actual response of the physical system, rather 
than the assumed response used for the design of a fixed controller. In addition, adaptive 
approaches may be able to accommodate unanticipated changes in the dynamics of the controlled 
physical system or its environment that are outside of the operational space assumed for a non-
adaptive approach. Conversely, adaptive controls may provide no benefit if the dynamics of the 
system are well known across the operational range to support the controller design, and in some 
instances may be less robust than a non-adaptive approach, particularly if the time to refine 
parameters is large. 

Note that adaptive control design methods can also be used to design a fixed (non-adaptive) 
controller at a design point. The adaptive approach converges on a solution through training 
conducted as part of the controller design process, after which the structure of the controller and 
the controller parameters are fixed. Additional analysis is still necessary to evaluate the 
robustness of the controller away from the design point. Because there are often nonlinearities in 
the controller developed using an adaptive approach, robustness analysis techniques may be 
different from the linear systems analysis techniques used for conventional design methods. 

5.1.6  Airworthiness Terminology Relevant to Stability/Robustness 

The Title 14 Code of Federal Regulations (CFR) and associated Advisory Circulars (ACs) 
relevant to control system characteristics do not discuss control system characteristics in terms of 
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frequency domain gain/phase margins. Instead the emphasis is on characteristics that can be 
demonstrated in time-domain analysis and flight tests. Examples of regulations pertaining to 
stability and robustness include: 
 
• §25.171 (Stability—General): requires that an airplane must be longitudinally, 

directionally, and laterally stable across operational range defined in §25.173–§25.177, 
and suitable stability and control feel for any normal operating condition necessary for 
safe operations. 

 
• §25.173 (Stability—Static longitudinal-directional stability): specifies requirements to 

return to trim speed within a defined percentage after perturbation away from trim for 
operational range defined in §25.175. 

 
• §25.181 (Dynamic Stability): requires that short period oscillations, other than  

lateral-directional, must be heavily damped with primary controls across operational 
speed range, and lateral-directional oscillations must be positively damped with controls 
free and controllable with primary controls without requiring exceptional pilot skill. 

 
These examples show how the regulations address stability in terms of settling to trim conditions 
or damping of oscillations, and robustness in terms of characteristics maintained over an 
operational range. Damping can be expressed mathematically, but generally pertains to how 
quickly a dynamic system settles to a commanded steady state condition or returns to a prior 
steady state condition after a perturbation, such as a wind gust. Positive damping indicates a 
reduction in magnitude to a negligible level within a small number of oscillations, and heavily 
damped typically refers to the same reduction within one period of the oscillation. 
 
5.2  ADAPTIVE CONTROL SYSTEM ARCHITECTURES 

Though non-adaptive control systems use fixed controller parameters, or parameters that are 
selected from a fixed lookup table, adaptive controllers provide a feedback mechanism for 
modifying their parameters to improve in situ control system performance, ideally without 
sacrificing robustness. In other words, the controller adapts based on the actual response of the 
physical system operating in its actual environment to improve its performance. To accomplish 
this, an adaptive control system includes a feedback mechanism that is often independent of the 
controller feedback path. This feedback mechanism collects data regarding the performance of 
the control system, analyzes the data, determines modifications to the control system parameters, 
and updates the parameters for use in the next execution cycle. The following subsections 
describe some of the most common adaptive control system approaches. 
 
5.2.1  Model Reference Adaptive Control 

In Model Reference Adaptive Control (MRAC), shown in figure 8, a reference model describes 
the desired response of the physical system operating in its environment, given the input 
command to the controller. If the controller is perfectly tuned, the actual response of the system 
would essentially be identical to the response of the reference model. However, because of 
assumptions or approximations made during design, there is likely to be some variation in the 
actual response of the system away from the ideal response described by the reference model. 
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Accordingly, the MRAC approach refines the controller parameters with the goal of driving the 
response of the system to match that of the reference model. In the figure, the adaptive feedback 
loop is shown in the diagram (and subsequent diagrams) in red. 
 

 

Figure 8. MRAC 

MRAC is an example of direct adaptive control, in which the controller parameters are directly 
calculated by the adaptive process. 
 
5.2.2  Model Identification Adaptive Control 

In Model Identification Adaptive Control (MIAC), shown in figure 9, a predefined reference 
model is not provided to the parameter estimation. Instead, a dynamic reference model is built 
using system identification techniques. As the system is characterized, the parameter estimation 
uses this representation of the system to refine the controller parameters. MIAC is advantageous 
in applications in which a predefined reference model is not feasible, but is limited to 
applications in which the important characteristics of the system can be identified based on the 
observed response of the system. 
 

 

Figure 9. MIAC 
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MIAC is an example of indirect adaptive control, in which the adaptive mechanism provides 
estimated system parameters to a separate process that calculates the controller parameters. For 
example, the adaptive system identification process may refine estimates of aerodynamic 
coefficients, which are subsequently used in the parameter estimation process to calculate 
controller gains and filter coefficients. 

5.2.3  Model-Free Adaptive Control 

In Model-Free Adaptive Control, shown in figure 10, the adaptive controller observes the 
response of the system and performs direct refinement of the control parameters. The model-free 
approach essentially collapses all of the functions associated with system identification, 
parameter estimation, and control into a single process. In many applications, little a priori 
knowledge of the system is needed to implement a model-free approach, other than a reasonable 
estimate of the system time lag (i.e., the interval of time between an input to the system and the 
response to that input). Disadvantages of the model-free approach are controller complexity and 
a lack of visibility into the process to support placement of process monitors. 

Figure 10. Model-Free Adaptive Control 

5.2.4  Adaptive Augmentation 

Adaptive augmentation, shown in figure 11, provides a way to improve the robustness of a 
system that uses a fixed (non-adaptive) controller. A separate controller (labeled Adaptive 
Augmentation in figure 11) provides a supplemental control signal designed to cause the 
physical system to track the response of the reference model. This augmentation essentially 
compensates for assumptions and approximations in the reference model used to design the 
non-adaptive controller. 
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Figure 11. Adaptive augmentation 

5.2.5  L1 Adaptive Control 

The intent of all adaptive control approaches is to improve robustness by adaptively refining 
controller parameters through a feedback process. There are two primary concerns for all of 
these approaches: 
 
1. The adaptation is always stable and transient responses are safe. 
2. The time to adaptation is sufficiently short compared to other important system 

timespans. For example, in adaptive flight controls, adaptation should be sufficiently fast 
to avoid adverse interactions with pilot inputs. 

 
For many adaptive control approaches, the robustness of the solution is coupled with the time to 
adaptation. A design that has a high adaptation gain (i.e., is tuned to adapt quickly) can have 
unacceptable transient response during adaptation and poor stability. Conversely, increasing the 
stability of the adaptive approach is often achieved by a lower adaptation gain, which requires a 
longer time period to converge on the refined control parameters. 
 
The L1 adaptive control approach [18] provides a solution to these two concerns by providing 
guaranteed stability and fast adaptation. This is accomplished by decoupling robustness and the 
time to adaptation in the L1 design methodology. Through this decoupling, robustness 
guarantees can be defined independently from the influence of adaptation time, and the adaption 
time can be made arbitrarily small (depending on hardware limits) without adversely impacting 
robustness. Because L1 is a controller design approach, it does not have a specific system 
topology. 
 
6.  INITIAL IDENTIFICATION OF SAFETY ISSUES 

To develop an appropriate approach for verifying the software aspects of an adaptive system, it is 
necessary to understand any safety issues relevant to using the adaptive system. There are safety 
issues associated with the various factors described in section 2 that influence an adaptive 
system, including the life cycle context in which adaptation is actively used, the learning method 
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used, and the role that the adaptation plays in the overall system function. This section discusses 
safety issues identified during Phase 1, with respect to each of these factors. 
 
6.1  IMPACT OF LIFE CYCLE CONTEXT ON SAFETY 

A primary distinction with respect to safety is between adaptive systems that are adaptive only 
for development, and those that are intended to remain adaptive in operation. Because the design 
associated with adaptive systems used only for development is fixed, the safety concerns for 
these are similar to what would be appropriate for any other fixed design. However, there are 
some characteristics of the adaptive algorithm that should be addressed from a safety 
perspective. 
 
Using the fuel measurement system example, the NN was trained using data provided by a  
high-fidelity model relating sensor readings to fuel level. The trained network shows good 
agreement with the training data and verification data. Though the network was then fixed, it still 
contained nonlinearities that needed to be evaluated analytically to show that they would not 
present a threat to the safe operation of the aircraft by providing spurious fuel measurement 
readings into the system. An analytical approach was devised that showed mathematically that 
nonlinearities between test points were bounded and well behaved, demonstrating that network 
nonlinearities would not result in spurious fuel measurement. 
 
Based on this example, the following safety considerations were identified for the use of an 
adaptive approach in which the system is fixed in operation: 
 
• The integrity of the training data should be substantiated. In particular, the training data 

should provide a complete and correct representation of the intended behavior of the 
adaptive system. 

• Verification data that is independent of the training data should be provided to 
demonstrate that the network has converged to an acceptable solution. 

• Any nonlinear characteristics in the resulting system should be shown not to adversely 
impact system safety. This argument should address the entire operational input space of 
the adaptive system, not just specific points covered by training or verification data. 

• The means for continuing to update the solution should be shown to be disabled so that 
the system cannot inadvertently become adaptive in operations. 

• Other safety concerns that may be associated with the use of similar conventional 
systems for the specific application area should be addressed. 

 
For applications that adapt in operation, the safety considerations are predicated on the type of 
application and the safety concerns associated with the specific adaptive approach. These safety 
considerations are addressed in section 6.2. 
 
6.2  IMPACT OF THE ROLE OF ADAPTATION ON SAFETY 

Adaptation could be used in various types of applications that would be relevant to NextGen or 
to airborne systems. Additional types may be identified as this analysis progresses, or the 
definition of additional sub-types may prove beneficial in the future. For each type of 
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application, the role that the adaptation would play is addressed and safety considerations are 
listed. 

6.2.1 Monitoring 

Adaptive approaches that use statistical analysis for classification and clustering can be used for 
monitoring applications, such as vehicle or system health monitoring. If used in a batch 
environment, a monitoring technique can review a pre-recorded data set to look for anomalies 
and trends that, otherwise, may not be evident from inspection. If used in a real-time context, 
these techniques can assess current data in light of the data history to produce insight for 
situational awareness or vehicle health. 

6.2.1.1  Safety Considerations 

Adaptive approaches for system monitoring are typically used in an offline setting. Any insight 
gained from these analyses can be subject to verification before an action, typically manual, is 
taken. The use of these techniques in a real-time setting is a current research topic. Certainly the 
risk of either false-positive or false-negative indications resulting from these techniques would 
need to be carefully evaluated before any use could be proposed for a safety-critical 
environment, particularly if the indication triggered an automated response. 

6.2.2 Parameter Estimation for Performance/Efficiency 

An adaptive approach can be used to refine estimates of a parameter or set of parameters that are 
related to performance. For conventional systems, performance models are often deliberately 
conservative, and online estimation of related parameters may provide benefits in terms of 
efficiency or performance. Regression analysis is often used for parameter estimation. 

6.2.1.2  Safety Considerations 

Parameter estimation may represent minimal safety concerns if certain considerations can be 
addressed. The primary consideration is establishing a safe range from which the adaptive 
approach can select a parameter value. Excursions outside this bound would indicate that the 
adaptive approach is nonconvergent, and a monitor would provide the means for reverting to a 
conventional approach, such as a fixed value that represents the midpoint of the allowable 
parameter range. Analysis would be necessary to show that the discontinuous jump from the 
previous out-of-range value to the midpoint value does not introduce an unsafe transient. 

6.2.3 Parameter Estimation for Robustness 

The previous discussion addresses parameter estimation to improve performance/efficiency. 
Parameter estimation can also be used in a controls application to improve the robustness of the 
controller. For cases such as indirect adaptive control, control parameters may be calculated from 
other system parameters, such as airspeed. In this situation, the control law itself is not adaptive, 
but parameters provided to it, from which it calculates its control parameters, are determined 
using an adaptive approach. The use of indirect adaptive control is likely to result in a more 
robust control law for the current operational conditions, because adaptive estimation is likely to 

27 



 

provide more accurate estimations of parameter values than could be provided through 
conventional means (such as with a priori analysis or a table lookup value). 
 
6.2.1.3  Safety Considerations 

The safety implications for parameter estimations that are used in indirect adaptive control 
applications may be greater than those associated with estimation used for 
performance/efficiency improvements. Errors in estimation, even if the estimates are within the 
tolerance boundaries, now imply a reduction in control system robustness, rather than merely a 
loss of performance or efficiency. Additionally, a discontinuous jump when the fallback is 
invoked may result in an unsafe control system transient. 
 
6.2.4 Control Reconfiguration 
 
Parameter estimation for direct adaptive control generates refined values for the control system 
parameters directly, based on the response of the closed loop system. Direct adaptive controls 
may provide the greatest benefit in terms of robustness and may provide the only means to retain 
stability in situations in which changes in the system or the operational environment deviate 
substantially from those assumed when the control law was developed. 
 
6.2.1.4  Safety Considerations 

It may be infeasible to establish parameter estimate bounds and a baseline for reversion if the 
direct adaptive approach fails. Accordingly, there may not be means for providing a backup 
control system that can be invoked if the adaptive approach becomes unstable. The viability of 
an adaptive control system may then rest completely on the strength of the analytical evidence 
that can be established prior to deployment. Certain adaptive control techniques, such as L-1 
adaptive control, provide guarantees regarding convergence and other characteristics related to 
the robustness. Consequently, safety considerations associated with adaptive control 
reconfiguration is largely tied to the type of control architecture used and the specific adaptive 
technology used within that architecture. 
 
6.2.5 Planning 
 
Statistical analysis for optimization combined with reinforcement learning may be applicable to 
applications involving planning or trajectory analysis. Similar to the discussion for monitoring, it 
is envisioned that optimization using reinforcement learning could be used in a non-real-time 
setting to generate plans or optimized trajectories that could then be verified before being acted 
upon. It is possible, however, that these techniques could also be used in a real-time environment 
to perform in situ trajectory revisions. 
 
6.2.1.5  Safety Considerations 

Planning that uses an adaptive approach is typically performed in an offline setting. Results from 
these adaptive techniques can be subject to verification before an action (typically manual) is 
taken. The use of trajectory optimization or other planning in a real-time context would 
necessitate the use of monitors to ensure that no safety or operational constraints are violated by 
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the results and that a suitable fallback is provided in case the adaptive approach is  
non-convergent. 
 
6.3  SAFETY CONCERNS FOR ADAPTIVE ALGORITHMS 

Safety concerns can differ depending on the type of adaptive algorithm or technique used. This 
analysis is ongoing and, when complete, can be overlaid on the safety considerations associated 
with specific applications to develop a composite picture that includes safety considerations for a 
particular adaptive technology used for a particular application. 
 
6.3.1  NNS 

Safety considerations for NNs are split between static (non-adaptive in operation) and dynamic 
NNs, including dynamically growing networks, in which additional neurons may be inserted 
during operations: 
 
• In static NNs, unsafe nonlinear network response can occur during operation in a region 

of the input space that was not covered by verification. 
• Dynamic NNs have safety concerns including: 
 

- Feedback data that could contain a substantial amount of noise that adversely 
impacts convergence of the adaptation. 

 
- Schemes that dynamically insert additional neurons into the network. A failure 

condition (FC) may result if this growth is unbounded to the point that it impacts 
convergence/computational resources because there are too many nodes to 
process in the time required. 

 
- Adaptation that fails to converge quickly enough to support continued safe 

operations. 
 
6.3.2  Genetic Algorithms 

As discussed in section 4.2, genetic algorithms involve the stochastic generation of populations 
of candidate solutions that compete in an evolutionary process. The benefit of the technique is to 
propose novel candidate solutions and would likely be applicable primarily to a development 
environment. Candidate solutions proposed through the use of genetic algorithms would be 
subject to verification to ensure that they do not present safety concerns. Because it is not certain 
that solutions provided by genetic algorithms are linear, their verification may be similar to what 
would be performed on static NNs or other nonlinear algorithms. 
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6.3.3  Reflection/Autonomic Computing 

This technology can adjust the structure of the computer program at runtime and, therefore, the 
safety considerations associated with the technology can extend to reallocation of computational 
resources. Relevant safety considerations include: 

• Safety impacts due to the reallocation of resources.
• Changes in the operating system schedule that may affect hard real-time deadlines.
• Resources allocated to increase performance that could adversely affect components.

6.3.4  Adaptive Controls 

A number of representative adaptive control architectures are discussed in section 5. In some 
instances, a specific adaptive technology, such as an NN, provides the adaptivity (such as 
estimating an indirect parameter for MRAC). In other instances, the technology itself defines the 
architecture, as is the case with L-1 adaptive control. 

Safety considerations for adaptive control depend not only on the type of control architecture 
used but also on the characteristics of the system under control. Generally, systems with slowly 
varying system characteristics may provide less concern for the application of adaptive controls 
than a system with rapidly varying or discontinuous dynamics. In addition, issues presented in 
section 5 regarding controllability and observability are issues for any adaptive control approach. 

In summary, safety considerations for adaptive controllers result from the combined 
contributions of the specific adaptive control technology, the architecture in which it is used, and 
the characteristics of the system to which the adaptive control scheme is applied. 

7. INITIAL PHASE 2 ACTIVITIES

Though the Phase 1 effort was aimed at identifying foundational aspects essential to assessing 
the assurance needs for adaptive systems, Phase 2 worked to condense that information to 
understand what specific requirements, especially at the software level, are needed to ensure the 
safe use of adaptive systems. Because the work in Phase 2 was not done by those who worked on 
Phase 1, initial Phase 2 activities started with a review of the Phase 1 results and final report [19] 
and independent examination of the characteristics and architecture of several basic types of 
adaptive systems. 

An adaptive system typically incorporates a reference model of the desired response and a 
learning mechanism that adjusts the control parameters in response to measured changes in the 
external environment. The control objective is to adjust parameters so that the actual 
performance matches the desired one. The learning mechanism may take several forms, such as 
NN, reflection/autonomic (dynamic code assignment or self-modifying code), and genetic update 
(random mutation and fitness selection), as described in section 4. 

Figure 12 shows a useful taxonomy of the essential attributes of adaptive systems. As figure 12 
shows, there is tremendous diversity among different types of adaptive systems, making generic 
assessment of software assurance requirements infeasible. Consequently, the Phase 2 efforts 
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targeted a particular adaptive system type. To that end, a specific set of features and constraints 
were defined so that more specific assessment of the impact of that adaptive system could be 
made. The taxonomy in figure 12 shows that a controls application (e.g., a flight controller) that 
continuously monitors the environment (parameter identification) was selected onboard the 
aircraft (i.e., parameter updates are calculated locally rather than being uplinked from a ground 
facility) that uses supervised learning to perform the parameter update. This choice was guided 
by two considerations. 
 

 

Figure 12. Adaptive system taxonomy 

First, adaptive control has been in use since at least the 1960s and has been the subject of much 
research and several military applications, of which the following are some examples: 

• NASA/USAF F-111 Mission Adaptive Wing [20]. 
• The Boeing Company is using adaptive control for production of the Joint Direct Attack 

Munition (JDAM). 
• NASA has been using L1 adaptive control for research with an unmanned model of a 

small-scale commercial aircraft [21]. 
• Rockwell Collins (formerly Athena) has demonstrated the Automatic Supervisory 

Adaptive Control (ASAC) on an unmanned, small-scale F/A-18 [22]. 
• Honeywell®/Air Force Research Laboratory Integrated Adaptive Guidance & Control For 

Future Responsive Access To Space Technology (FAST) [23]. 
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These types of adaptive controllers have not been used in any commercial aircraft. 
 
Second, the research team tentatively concluded that, to ensure the safety of an airborne adaptive 
system, it would: (1) be necessary to impose some system-level features and constraints, and (2) 
be of a type that could be feasibly and accurately represented by a computer model of a type 
amenable to automated analysis. These self-imposed requirements excluded the genetic 
algorithm and reflection/autonomic types of learning because they appeared to present extreme 
modeling difficulty. Controllers of the gain scheduled-type were not considered because the 
adaptation is limited to a few predetermined states and can therefore be verified using the 
standard methods of DO-178B/C. Similarly, an adaptive system that is pretrained offline and 
remains in a fixed configuration was not considered. 
 
To focus the analysis, a representative adaptive system architecture exemplar was constructed 
that generalizes the above examples and meets the imposed requirements to use in analysis of 
verifiability per DO-178B/C (figure 13 shows a block diagram). 
 

 

Figure 13. Example of flight control architecture 

This is a triggered system that uses an expected response model to update its operating 
parameters. The updated values are used when triggered by a signal (e.g., by pilot command or 
vehicle health management [VHM] system acting as an observer of various related aircraft 
components such as sensors, hydraulics, actuators, control surfaces, etc.) or the occurrence of a 
failure or off-nominal condition. The architecture otherwise remains in a fixed/static 
configuration. 
 
At the outset, two major safety requirements were considered for this controller: (1) that 
parameter adjustment be constrained to predetermined ranges that guarantee stability and 
controllability (e.g., in the Lyapunov criteria sense), and (2) that the control error signal 
converges asymptotically to approximately zero, within an arbitrarily small bound, infinite time. 

System Identification
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These seem to be essential features of a certifiable flight control system whether adaptive or not, 
though they may be challenging requirements, depending on the adaptive algorithm. 

To determine the applicability of the DO-178B/C objectives to this adaptive controller, it is 
helpful to review the current certification framework and the recent changes it has undergone. 
Section 8 describes the certification methodology and framework in the current CFR, associated 
advisory materials, and industry standards. 

8. CURRENT CERTIFICATION GUIDANCE AND STANDARDS

It is helpful to discuss the current certification framework to determine whether or not adaptive 
systems could be certified with or without changes and what those changes should be if required. 

This framework is built around Title 14 CFR. Figure 14 shows the general process flow and the 
applicable de facto standards of current certification practice. These standards relate to: (1) 
system development, (2) safety assessment, and (3) design assurance of system hardware and 
software. In the interest of focusing on the key steps, details of all activities and deliverables to 
be fully compliant are not shown, however, they can be found within the referenced documents . 
The aim here is to give an overview and not a full descriptive narrative. DO-254 [24] is not 
discussed because this is not within the scope of the original task and is limited in application to 
programmable devices and not to hardware generally [25, 26]. Similarly, SAE ARP-5150 [27] 
provides guidance for assessing ongoing safety during commercial operations, but this aspect 
will not be discussed in this report. 
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Figure 14. Certification process flow and applicable standards 

In each case, there is a direct equivalence between U.S. and European editions of these 
documents. These are denoted by SAE/RTCA document numbers and the corresponding 
European document numbers (published by European Organization for Civil Aviation 
Equipment [EuroCAE]). The U.S. editions are used here for brevity. 
 
8.1  ARP-4754A GUIDELINES FOR DEVELOPMENT OF CIVIL AIRCRAFT AND 
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The original version of ARP-4754 [28] has been in use for 15 years. In 2003, the SAE S-18 
Committee started development on ARP-4754A, which was published in 2010. It now has a new 
title: “Guidelines for Development of Civil Aircraft and Systems” (the previous title had been 
“Certification Considerations for Highly-Integrated or Complex Aircraft Systems”). ARP-4754A 
discusses the certification aspects of systems installed on aircraft, taking into account the overall 
aircraft operating environment and functions. The following is taken from ARP-4754A [29]: 
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This document discusses the development of aircraft systems taking into account 
the overall aircraft operating environment and functions. This includes validation 
of requirements and verification of the design implementation for certification and 
product assurance. It provides practices for showing compliance with the 
regulations and serves to assist a company in developing and meeting its own 
internal standards by considering the guidelines herein. 
 
The guidelines in this document were developed in the context of 14CFR Part 25 
and European Aviation Safety Agency (EASA) Certification Specification (CS) 
CS-25. It may be applicable to other regulations, such as Parts 23, 27, 29, 33, and 
35 (CS-23, CS-27, CS-29, CS-E, CS-P). 
 
This document addresses the development cycle for aircraft and systems that 
implement aircraft functions. It does not include specific coverage of detailed 
software or electronic hardware development, safety assessment processes, in-
service safety activities, aircraft structural development nor does it address the 
development of the Master Minimum Equipment List (MMEL) or Configuration 
Deviation List (CDL). More detailed coverage of the software aspects of 
development are found in RTCA document DO-178B, “Software Considerations 
in Airborne Systems and Equipment Certification” and its EUROCAE 
counterpart, ED-12B. Coverage of electronic hardware aspects of development 
are found in RTCA document DO-254/EUROCAE ED-80, “Design Assurance 
Guidance for Airborne Electronic Hardware”. Design guidance and certification 
considerations for integrated modular avionics are found in appropriate 
RTCA/EUROCAE document DO-297/ED-124. Methodologies for safety 
assessment processes are outlined in SAE document ARP4761, “Guidelines and 
Methods for Conducting the Safety Assessment Process on Civil Airborne 
Systems and Equipment”. Details for in-service safety assessment are found in 
ARP5150, “Safety Assessment of Transport Airplanes In Commercial Service” 
and ARP5151 Safety Assessment of General Aviation Airplanes and Rotorcraft In 
Commercial Service. “Post-certification activities (modification to certificated 
product) are covered in section 6 of this document. The regulations and processes 
used to develop and approve the MMEL vary throughout the world. Guidance for 
the development of the MMEL should be sought from the local airworthiness 
authority.” 

 
Table 2 shows the means by which ARP-4754A may be invoked for a particular certification 
project. ARP-4754A guidance may also be applicable to aircraft equipment certified to other 
CFR parts, such as Parts 23, 27, 29, and 33, so for brevity only Part 25 will be considered in the 
discussion. In this table, the term “invocation/policy” means that the referenced document is 
recognized by the regulator as an acceptable means of compliance with the applicable CFR Part. 
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Table 2. ARP-4754A invocation 

Reference Description Applicability Invocation 
ARP-4754A Guidelines for 

Development of Civil 
Aircraft and Systems 

Aircraft systems and equipment AC 20-174[29], 
IP, CRI 

AC 25.1309-1A 
[30] 

Describes various 
acceptable means for 
showing compliance 
with the requirements of 
14CFR 25.1309(b), (c), 
and(d) 

Applies to any system on which 
compliance with any of those 
requirements is based. 
Section 25.1309(b) and (d) 
specifies required safety levels 
in qualitative terms, and requires 
that a safety assessment be 
made.  

Policy 

The issuance of an AC is a regulatory policy declaration that an applicant’s compliance thereto is 
one, but not the only, acceptable means of showing compliance to the referenced Part of 14 CFR. 
Compliance is recommended, but is not mandatory. AC 20-174 identifies ARP-4754A as an 
acceptable method for establishing a development assurance process. Compliance to 
ARP-4754A may also be required by the certification authority through the issue of a project 
specific FAA issue paper or our EASA certification review item (CRI). Final regulatory approval 
of all systems is assumed to be accomplished through or within a Technical Standard Order 
(TSO), type certificate (TC) or supplemental type certificate (STC) certification project. 

8.1.1  Discussion of Recent Changes to ARP-4754 

ARP-4754A has had substantial updates relative to its predecessor. The changes summarized 
here address the major changes as of January 2011. 

The title of the document changed from “Certification Considerations for Highly-Integrated or 
Complex Aircraft Systems” for ARP-4754, to “Guidelines for Development of Civil Aircraft and 
Systems.” This change is positive because it reinforces development aspects, rather than only 
certification; however, it is also negative because the notion of highly-integrated or complex 
systems is omitted from the title. 

The guidelines are primarily directed toward systems that support aircraft level function. 
Typically, these systems involve significant interactions with other systems in a larger, integrated 
environment. The contents are recommended practices and should not be construed to be 
regulatory requirement. It is recognized that alternative methods to the processes described or 
referenced may be available to an applicant desiring to obtain certification. Figure 15 shows a 
conceptual mapping of the old and new sections, whereas figure 16 shows the major changes and 
new content. 
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Figure 15. ARP-4754 and ARP-4754A sections mapping 

 

Figure 16. In/Out mapping of ARP-4754 and ARP-4754A 
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8.1.2  Identified Textual Changes Within ARP-4754A 

 
8.1.2.1  Section 1—Scope 

• A paragraph was deleted with reference to the precedence of this document in the event 
of conflict between the text of this document and the text of DO-178B. 

• All the information concerning “highly-integrated” or “complex systems” was deleted. 
 
8.1.2.2  Section 2—References 

• Applicable documents → Relationship between American/European standards. 
• Definitions. 
• Abbreviations and acronyms were added. 
 
8.1.2.3  Section 3—Development Planning 

• Life cycle process checkpoints and reviews were added. 
• Maturity expectations. 
• Transition criteria (i.e., life cycle process checkpoints and reviews, which are aligned 

with program phases and gates). 
• Management of deviations from plans. 
 
8.1.2.4  Section 4—Aircraft and System Development Process 

• Identification of aircraft-level functions, function requirements and function interfaces 
• Relationship between requirement levels, functional development assurance level 

(FDAL) and item development assurance level (IDAL) 
• The objectives for accomplishment of FDAL and IDAL (i.e., ARP4754A, Appendix A, 

DO-254/ED-80, and DO-178B/ED-12) 
 
8.1.2.5  Section 5.1—Safety Assessment 

• Safety case/Safety synthesis. 
• Safety program plan. 
• Preliminary Aircraft Safety Assessment. 
• Aircraft Safety Assessment. 
 
 
8.1.2.6  Section 5.2—Design Assurance Level Assignment 

• Design Assurance Level (DAL) assignment based on FC severity classification and 
independence attributes (no longer based on type of architectures). 

• Two different DALs: FDAL that apply to function requirement development and IDAL 
that apply to item (hardware/software) development. 

• Concept of Functional Failure Sets. 
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• New Table 5-2, “Development Assurance Level Assignment to Members of a Functional 
Failure Set,” with two assignment options. 

• FDAL assignment taking credit for external events. 
 
8.1.2.7  Section 5.3—Requirements Capture 

• Re-use of existing certified systems and items. The requirements to which the system or 
item was certified should be validated, according to the new application, and modified as 
necessary. 

• Deriving safety-related requirements from the safety analyses. 
 
8.1.2.8  Section 5.4—Requirements Validation 

• Definition of correctness and completeness improved. 
• Validation rigor improved with the concept of independence in the validation process. 
• The application of independence in the validation process is dependent on the DAL. 
• The validation plan should include a description of the validation activities to which 

independence is applied. 
• Independent review of requirement data and supporting rationale. 
• The reviews should be documented, including the review participants and their roles. 
 
8.1.2.9  Section 5.5—Implementation Verification 

• Identification of key verification activities and sequence of any dependent activities. 
• Identification of the roles and responsibilities associated with conducting the verification 

activities and a description of independence between design and verification activities. 
 

8.1.2.10  Section 5.6—Configuration Management 

• Two system control categories (see ARP-4754A Tables 5-6). 
 
8.1.2.11  Section 5.7—Process Assurance 

• The process assurance activities described are not intended to imply or impose specific 
organizational structures or responsibilities. However, process assurance should have a 
level of independence from the development process. 

 
8.1.2.12  Section 5.8—Certification Process 

• There may be a single certification plan for the project or a top-level plan for the aircraft 
and a set of related plans for each of the aircraft systems. 

• Early coordination and approval of the plan is strongly encouraged. 
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8.1.2.13  Section 6—Modification to Aircraft or Systems 

• Aviation Authority requirements and regulations categorize aircraft modifications into
either “minor” or “major” changes.

• When a modification is proposed to an item, system, or aircraft, an initial impact analysis
should be performed and should include an evaluation of the impact of the modification
on the original safety assessments.

• The modification impact analysis should be confirmed or updated once verification
activities have been completed. The results of these analyses should be reflected in:

- The appropriate certification documentation. 
- The verification activities needed to ensure that no adverse effects are introduced 

during the modification process. 
- The modification summary in which the impact of the implemented modifications 

is confirmed. 

8.1.2.14  Appendices 

• Appendix A—Process Objectives Data.

- Table A-1: Process Objectives, Outputs, and System Control Category by 
function development assurance level (note: the scope and detail of the life cycle 
data varies depending on the FDAL assigned). 

• Appendix B—Safety Program Plan.
• Appendix C—FDAL/IDAL assignment example.
• Appendix D—deleted.
• Previous guidelines in this appendix have been superseded by the material found in

section 5.2 of ARP-4754A.

8.2  ARP-4761 GUIDELINES AND METHODS FOR CONDUCTING THE SAFETY 
ASSESSMENT PROCESS ON CIVIL AIRBORNE SYSTEMS AND EQUIPMENT 

The major guidance for civil airborne systems and equipment safety assessment is SAE 
ARP-4761 [31]. This is commonly accepted by certification authorities and industry as an 
acceptable, but not the only, means of showing compliance to AC 25.1309. However, it is not 
formally referenced or recognized in an issued AC. ARP-4761 describes guidelines and a variety 
of examples of probabilistic risk assessment methods and techniques for performing the safety 
assessment of civil aircraft systems and equipment. SAE S-18 is currently updating this 
document with an expected release in 2014. 

8.3  SOFTWARE DESIGN ASSURANCE 

The primary software design assurance guidance document is DO-178B. Table 3 shows how it is 
invoked by the current regulatory framework. 
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Table 3. DO-178B invocation 

Reference Description Applicability Invocation 
DO-178B Software 

Considerations in 
Airborne Systems 
and Equipment 
Certification 

Provides guidance for the production of 
software for airborne systems and 
equipment that performs its intended 
function with a level of confidence in 
safety that complies with airworthiness 
requirements 

TSO,  
AC 20-115B 

Order 
8110.49, 
Change 1 

Software Approval 
Guidelines 

This order guides Aircraft Certification 
Service (AIR) field offices and 
Designated Engineering Representatives 
(DER) on how to apply RTCA/DO-178B, 
“Software Considerations in Airborne 
Systems and Equipment Certification,” 
for approving software used in airborne 
computers. 

Policy 

AC 20-115B Calls attention to 
RTCA DO-178B, 
“Software 
Considerations in 
Airborne Systems 
and Equipment 
Certification” 

Calls attention to RTCA DO- 178B, 
“Software Considerations in Airborne 
Systems and Equipment Certification,” 
issued December 1992. It discusses how 
the document may be applied with FAA 
TSO, authorizations, TC, or supplemental 
type certification authorization (STC). 

Policy 

9.  ADAPTIVE SYSTEM CERTIFICATION 

This section discusses adaptive system certification in the context of the selected adaptive system 
controller example and the current certification framework described above. 
 
9.1  CONCERNS REGARDING THE FEASIBILITY OF APPLYING DO-178B TO 
SOFTWARE DESIGN ASSURANCE OF ADAPTIVE SYSTEMS 

All adaptive systems embody a learning subsystem of some type and an embedded model of the 
desired system performance. The learning subsystem changes the system operating parameters 
(e.g., control gain) in response to measurements taken on the external environment. The 
objective is that the actual performance closely matches the desired performance represented in 
the model. Non-adaptive (fixed configuration) systems assume that the external environment 
remains constant. The external environment includes the sensors providing the inputs and 
actuators operating control surfaces. There may be several parameters that adjust value over time 
through the learning function. These will, in general, be real-valued variables. This means that an 
adaptive system has an infinite set of possible parameter values even if the allowable range is 
constrained. This immediately leads to difficulties because it is infeasible to show by review, 
test, or conventional analysis that, in the implemented system, all system requirements are 
satisfied under all possible parameter values. Moreover, it is difficult to establish what the 
expected output from a test should be because the exact system state has evolved through 
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learning, is unobservable, and, therefore, unknown. These difficulties are explained at length in 
Jacklin [32, 33] and Schumann [34]. Therefore, one objective in this work is to find ways in 
which these difficulties can be overcome. 
 
9.2  SUGGESTED APPROACH TO SOFTWARE DESIGN ASSURANCE OF ADAPTIVE 
SYSTEMS 

In other works, such as reference 32, the problem has been asked in terms of what methods could 
be applied to comply with the assurance standards for software of DO-178B and what changes or 
additions to DO-178B would be necessary to permit compliance. Answers to these questions can 
best be arrived at by considering the methods by which validated, verifiable high-level 
requirements (HLRs) for adaptive systems can be written. With this approach, the software 
assurance problem becomes more tractable because DO-178B/C defines a process to verify that 
operational code meets the previously stated requirements, which are assumed to be correct and 
complete as provided by the systems and safety development processes. 
 
One premise of this work is that DO-178B alone cannot provide adequate software design 
assurance, but that DO-178C and its associated supplements offer a promising way to 
accomplish adequate software design assurance if they are preceded by rigorous system design 
activities that generate validated and verifiable design constraints and requirements. This is 
mainly because DO-178C and supplements offer a well-defined methodology to partially shift 
the software design assurance burden from test to analysis. Therefore, this research considered 
the means and methods by which an applicant can derive and validate a complete and consistent 
set of verifiable adaptive system requirements expressed in formal or mathematical terms with 
well-defined syntax and semantics that are amenable to modern analysis methods capable of 
providing a high level of design assurance. 
 
The following principles are asserted: 
 
• Software design assurance alone cannot ensure the safe application of adaptive systems. 
• System safety objectives must be defined and captured; these form the basis of an 

unambiguous safety case. 
• The adaptive system must, by design, exhibit certain functional and safety properties to 

ensure an acceptable level of safety. These properties need to be established and captured 
as part of the system requirements capture process. 

• System-level validation of the system properties is necessary to ensure safe operation. 
 
This research suggests that some of the newer techniques incorporated in DO-178C and the 
associated supplements augmented by system-level considerations offer a possible means to 
overcome the difficulties of software design assurance for adaptive systems. More specifically, 
this research suggests that: 
 
• More reliance be placed on verification by analysis or simulation than on testing. 
 
• Multi-layered verification methods involving a judicious combination of testing, analysis, 

and the simulation of models be used. 
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• Model-based design (MBD) techniques to capture system behavior in an analyzable form 
be used. 

• Formal methods (FM) analysis techniques should be used because the learned state space 
is too broad for testing alone to provide adequate assurance and to predict expected test 
results. 

• Improved system safety analysis techniques should be used to derive system safety 
properties and that those properties be expressed in mathematical notations that are 
amenable to verification by FM. 

 
In addition, to make the verification effort manageable, techniques analogous to equivalency 
classes that subdivide the learned state space and structural coverage analysis that measures the 
verification completeness of the learned state space; both are needed to complete the approach. 
Currently, these techniques are not known. 
 
9.3  SYSTEM-LEVEL APPROACHES TO THE CERTIFICATION OF ADAPTIVE 
SYSTEMS 

Because of the difficulties of showing software design assurance of an adaptive system by 
following only the processes of DO-178C, this research concludes that, to ensure the safe use of 
adaptive systems, additional work must be accomplished at the system level with the imposition 
of certain constraints on the architecture and permitted adaptation. The constraints result in the 
construction of desired system safety properties and requirements that, when verified, ensure that 
the adaptive system provides an acceptable level of safety. The system HLR are therefore 
established as part of the system design and safety processes of ARP-4754A and ARP-4761 
through the construction of system functional requirements and safety requirements. These 
properties must be written such that: 
 
• The system-level HLR fully express the necessary system properties. 
• They are verifiable by one of the means identified in DO-178C and the associated 

supplements. 
 
The system properties are then verifiable by formal or other methods, so that objective proof of 
conformance can be established. In the analysis of problematic DO-178C objectives, this 
research makes use of the system properties that exist as a consequence of satisfying the safety 
objectives of the adaptive system. 
 
The definition of “requirement” given in ARP-4744A implies that requirements are valid only if 
there are means by which they can be verified. Therefore, the generation of requirements must be 
cognizant of the expected verification methods. Derived requirements, which develop throughout 
the development phase, should be redirected back to the system and safety processes for 
validation. This is necessarily an iterative process because there are no known stopping criteria 
that can reliably determine completeness. 
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9.4  DEFINING THE SYSTEM-LEVEL CHARACTERISTICS OF AN ADAPTIVE SYSTEM 

To make the analysis more concrete, the example architecture diagram of the target (see figure 
13) was analyzed to define some of its salient system-level characteristics in terms of the
system-level design and safety objectives that we consider essential to enable compliance with 
the objectives of DO-178B/C and other airworthiness standards. 

These characteristics are inputs to the requirements generation process to be followed by the 
implementation activity. In the analysis of challenging DO-178B/C objectives, the system 
properties that exist as a consequence of satisfying these adaptive system safety objectives were 
used. The first step in the process is to define the “system safety objectives” that must be 
satisfied as part of systems requirements, design, and verification and validation (V&V) 
processes (shown in table 4). 
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Table 4. System safety objectives for adaptive systems (developed with exemplar adaptive 
flight control system in mind) 

 

System Safety 
Objectives for Adaptive 

Systems Activities and Techniques for Satisfying the Objective 
1 Ensure adaptive 

algorithm stability and 
convergence 
 
(to be satisfied during 
development) 

Activities 
The following activities apply to both the adaptive system and the closed 
loop system: 
• Develop system level requirements to ensure stability and 

convergence. 
• Define stability and convergence assumptions (e.g., linear plant 

dynamics, continuous time implementation). 
• Define stability and convergence constraints (e.g. operating condition 

[input space] limitations, learned state space limitations, maximum 
convergence time). 

• Define computational resource usage constraints. 
• Define engagement/disengagement criteria with transient suppression. 
• Define runtime monitors for detection of: 

 
- Violation of assumptions or constraints. 
- Loss of stability or convergence. 
- Excessive usage of computational resources. 

 
• Develop system-level requirements that specify recovery behavior in 

the event of monitor alarm. 
• Validate system requirements. 
• Validate assumptions and constraints. 
Techniques 
Analytical models are used in combination with FM and automated tools 
to: 
• Specify mathematically rigorous system requirements and design. 
• Develop proofs of stability and convergence (e.g., Lyapunov stability 

proof). 
• Validate system requirements. 
• Generate expected results for requirements-based testing. 
• Determine optimal adaption gains to balance stability vs. convergence 

time. 
• Perform automated synthesis of real-time monitors (runtime 

verification). 
Use adaptive controller designs with proven stability and convergence 
properties (e.g., L-1 adaptive control). 
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Table 4. System safety objectives for adaptive systems (developed with exemplar adaptive 
flight control system in mind) (continued) 

System Safety 
Objectives for Adaptive 

Systems Activities and Techniques for Satisfying the Objective 
2 Ensure adaptive 

algorithm stability and 
convergence are 
satisfied 

(to be satisfied during 
real-time operation 
consistent with Rushby 
[35, 36]) 

Activities 
• Development activities for this system objective (2) are covered in

system objective 1.
Techniques 
• Use of confidence tool (confidence measure of NN weight

convergence).
• Use of envelop tool to predict and avoid regions of instability.
• Real-time range limiter on learning state space.
• Real-time range limiter on input space.
• Real-time stability/convergence monitor with recovery logic if:

- Stability/convergence is observed to have failed.
- Stability/convergence cannot be ensured because of observed

violation of assumptions or constraints. 
- Computational resource margins are observed to be violated.

3 Ensure adaptive 
algorithm actively 
controls only when 
appropriate 

Activities 
• Development activities for this system objective (3) are covered in

system objective number 1.
Techniques 
• Use of engage/disengage mechanisms:

- VHM.
-  Confidence/Envelop tools.

4 Ensure no adverse 
safety impact due to 
transients when an 
adaptive system is 
engaged/disengaged 

Activities 
• Development activities for this system objective (4) are covered in

system objective number 1.
Techniques 
• Fader functionality for smooth transition of conventional to adaptive

control.
• Allow adaptation learning prior to the adaptive system trigger to

eliminate the need for forcing function excitation to enable adaptation
learning.

5 Ensure adaptive 
algorithm does not 
adapt to noise or drift 
away from good 
solution when lacking 
useful 
command/response 
dynamics 

Activities 
• Development activities for this system objective (5) are covered in

system objective number 1.
Techniques 
• Use of dead band on adaptive system inputs so that learning is allowed

only when useful command/response dynamics are available.
• Use Bayesian reasoning to update the learning parameters only in the

presence of sufficient excitation.
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The next step in the process is to work through all the objectives of DO-178B/C and, based on 
the principles described and on table 4, assign methods and techniques that would provide 
satisfaction of those objectives. The following methodology was used: 
 
• List DO-178B/C objectives that are difficult to meet for the example adaptive system 

chosen. 
• Understand what the DO-178B/C objective is asking for and why it is more difficult to 

meet for this example adaptive system versus a nonadaptive system. 
• List the functional and safety objectives of the system-level adaptive system. These 

objectives will enter the requirements creation process of an implementation. 
• List the methods that could be used to provide the evidence necessary for the  

system-level objective of the adaptive system. 
 
These steps have been followed for our example adaptive system and the results partially 
tabulated in appendix C. Because of resource constraints, table 4 is incomplete. The research 
team was unable to conclude whether there were special difficulties meeting DO-178C for some 
objectives and, therefore, further work remains to complete this step. Note that, in this table, 
objectives were merged so that they do not appear in the table in numerical order. 
 
In the development of the table, the system-level use of mathematical models and MBD was 
emphasized to describe (i.e., specify) the complete system behavior in a form suitable for 
analysis. The system- and software-level use of FM (and other FM-like techniques) was also 
emphasized to enable proofs of system safety and performance properties and to explore the full 
state space of the adaptive system within feasible simulation times—at least within the veracity 
of the mathematical description and the models. 
 
Finally, to bound the analysis problem further, the use of equivalence classes is suggested as a 
possible means for classifying real numbered parameter and I/O variables into a finite and 
possibly small number of subsets. Establishing equivalence classes requires detailed knowledge 
of the application domain and target architecture. 
 
10.  ASPECTS OF TOOL QUALIFICATION FOR ADAPTIVE SYSTEMS 

The recommended approach to software verification of adaptive systems uses MBD and FM 
tools. No need was identified to amend the guidance provided in the tool qualification section of 
DO-178C or of the tool qualification of supplement DO-330. 
 
11.  RECOMMENDATIONS 

The summary recommendation is that, for the safe use and successful certification of adaptive 
systems, the following three-step strategy should be implemented: 
 
1. A safety assessment to create a structured, objective safety case. 
2. System design activities to create the corresponding safety requirements. 
3. Software design assurance using the latest standards. 

 

47 



 

These steps must be supported by mathematically based FM or similar methods and MBD 
techniques. This approach is fully consistent with the current regulatory and standards 
framework. One caution is that not all the necessary analysis and modeling tools are presently 
available and, therefore, further research is required before such an approach can be applied in a 
practical application. 
 
This summary recommendation is broken down into a number of more detailed 
recommendations in section 11.1. These are classified as V&V recommendations. Though one 
particular adaptive system type was the focus of the research, these recommendations are likely 
to be applicable to a wider variety of systems. 
 
11.1  RECOMMENDATIONS FOR DERIVATION AND VALIDATION OF ADAPTIVE 
SYSTEM SAFETY AND FUNCTIONAL REQUIREMENTS 

The following steps are recommended for the creation and validation of system functional and 
safety requirements: 
 
• Derive system safety objectives that are adaptive system application domain-specific by 

the construction of a structured, objective, evidence-based safety case. The system-level 
properties that need to exist essentially form the basis of a safety case. Certification of 
adaptive systems depends on both a system safety case (i.e., formal safety claims, 
arguments, and evidence) and system and software design assurance. 

 
• Derive system-level properties that satisfy the safety objectives to ensure an acceptable 

level of safety. Such properties will drive constraints on the system design. 
 
• Derive system requirements from system safety properties and objectives. Safety 

properties should be specified for: 
 

- When adaptation may be engaged (triggering). 
- Allowable learned state space, implying that each learned parameter value be 

constrained to a known and verifiable range. 
- Detection and fallback if they exceed the allowable range. (i.e., response when 

constraints are violated). 
 

• Embed system-level properties and requirements in computer models suitable for 
automated analysis with qualified tools that can be further decomposed and passed down 
to the verification processes. 

 
• Use of ARP-4754A and DO-178C and its associated supplements. 
 
• Update of ARP-4761 should include a structured, evidence-based safety case 

methodology. 
 
New regulatory policy instruments are needed to invoke DO-178C and an updated ARP-4761. 
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11.2  RECOMMENDATIONS FOR ADAPTIVE SYSTEM REQUIREMENTS 
VERIFICATION 

The verification process for the system-level functional and safety requirements and the resulting 
derived requirements can be summarized by the following steps: 
 
• It is recommended that MBD techniques incorporating mathematical models with  

well-defined syntax and semantics are used. This provides well defined input to 
subsequent analysis tools. The mathematical model should express requirements for 
safety properties e.g. controllability, overshoot, stability, convergence in the example 
adaptive system. 

 
• System behavior should be represented by discrete-time mathematical models if the 

implementation will be a digital system. 
 
• FM (and other FM-like techniques) or similar methods are needed to verify requirements 

(i.e., behavior) because: 
 

- Learned state space is too rich to adequately test, or for testing to provide 
adequate coverage assurance. 

- They allow construction of verification test cases and predict expected test results. 
- They can provide proof of system safety and performance properties. 
- Allow to explore the full state space within feasible simulation times. 

 
• The use of DO-178C and its associated supplements is necessary. DO-178B is inadequate 

to provide sufficient software design assurance. 
 
• A multilayered verification methodology will be necessary, involving all of the available 

techniques (i.e., test, inspection and analysis [simulation]). 
 
• Need to ensure that the system/safety properties (that form the basis of the safety case) 

remain intact during software requirements development and implementation. This 
implies traceability up and down the requirements and verification hierarchy. 

 
• The certification process will need to place increased reliance on some compliant, but 

nontraditional, means of compliance, with certain DO-178C objectives (i.e., more 
reliance on verification by analysis, simulation, and formal proofs of correctness than on 
testing). 

 
- Accept analysis and inspection-based verification results for partial certification 

credit. 
- Use of outputs from the system processes. 
- Use of system analytical models as software requirements. 
- Use of system analytical models to perform software verification. 
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12.  FUTURE ADAPTIVE SYSTEMS CERTIFICATION RESEARCH NEEDS 

The following list describes some gaps identified in methods and techniques that appear to be 
necessary to perform the steps identified in section 11.2: 
 
• A new technique is needed, analogous to conventional equivalency classes, to classify the 

learned state spaces into a finite (and possibly small) number of equivalence regions or 
ranges to make verification manageable. 

 
• A new technique is needed, analogous to structural coverage analysis, to adapt the current 

notion of structural coverage to measure coverage completeness of the learned state 
space. 

 
• Further work is needed to complete the table in appendix C. Specifically, it is still 

necessary to determine whether additional V&V methods and activities or  
system-level constraints are needed to meet the DO-178C objectives. 

 
• A study of the mapping of available MBD and FM tools to the adaptive system 

application domain is suggested to identify capability and qualification gaps. Specifically, 
there are presently capability gaps in showing in-target object code conformance to HLR 
and low-level requirements and in showing that worst-case execution time objectives are 
met. 

 
• ARP-4761 presently provides only limited and incomplete guidance on the construction 

of structured, evidence-based safety cases. It is suggested that guidance be extended. 
 
• Because of the specialized nature of FM and MBD techniques, these capacities are not 

well-diffused into the developer community. A more formalized process map should be 
developed along with supporting user guides. 

 
• The research team recommends that the methodology outlined be demonstrated on an 

actual adaptive system application and implementation. The application should be  
well-defined and have the supporting mathematical models and code available that are 
readily translatable into FM/MBD constructs and amenable to all levels of verification up 
to and including the flight test (e.g., the L1 controller). This could include demonstrating 
whether FM can be used to demonstrate that NN is stable under all normal and abnormal 
input conditions. 

 
13.  SUMMARY 

Adaptive systems are used in various domains for a wide range of purposes. This range extends 
from passive monitoring or advisory systems to estimating one or more parameters to improve 
performance or efficiency and, in the extreme, to the complete reconfiguration of flight control 
laws in military systems in response to unanticipated system failures or environmental 
conditions. For adaptive systems to be used in civil applications for NextGen or in air traffic 
control systems in the NAS, those systems will need to comply with regulatory requirements just 
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as any other system would. Determining what the design assurance requirements should be for 
software aspects of those systems was the main focus of the Verification of Adaptive Systems 
tasks. 

The Phase 1 effort was aimed at understanding the range of adaptive systems and how they 
impact verification. Progress was made in developing a more comprehensive understanding of 
machine learning in general, in how machine learning is used to enable a system to adapt, 
(especially with respect to feedback processes), and where machine learning is being used in 
various domains (with particular interest in controls applications). Phase 2 significantly extended 
that knowledge to determine what requirements, especially at the system level, are needed to 
ensure the safe use of adaptive systems. 

The Phase 2 work concluded that the software design assurance problem for adaptive systems is 
principally one of how to develop correct and complete requirements that define the necessary 
system functional and safety properties. These properties need to be established primarily by 
analysis. Certification of an adaptive system likely cannot be accomplished using a software 
design assurance methodology that is based principally on testing because the test difficulty is 
insuperable unless guided by analysis. A set of system safety properties must first be specified 
and then design requirements and constraints must be imposed at the system level so that the 
safety properties are first ensured by design and then passed down to the software design 
assurance process (DO-178C and its associated supplements) for verification to show that they 
have been implemented correctly. The verification of requirements can be accomplished by the 
use of FM and MBD system and software design and verification techniques as currently 
envisaged by DO-178C and supplements. The methods suggested are within the scope of the 
current regulatory framework and no major change need be contemplated. Including a structured, 
evidence-based safety case methodology in the update to ARP-4761 is recommended, as is the 
inclusion of this within the current framework. The principle compliance methodology changes 
suggested are: (1) attaching more emphasis to the system and safety development processes 
through the construction of a structured, evidence-based safety case, and (2) placing more 
reliance on system and software analysis using FM and MDB or similar techniques and less on 
testing for gaining certification credit. 
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APPENDIX A—TERMINOLOGY 

The following list represents a working set of relevant terms and definitions from Phase 1, 
subject to further revision during Phase 2. 
 
• Activation Function (also, Threshold Function): defines the output of node in a neural 

network (NN) given an input or set of inputs; typically a nonlinear curve, such as a 
hyperbolic tangent or another sigmoid (“S-shaped”) function. 

• Active Feedback: Continuously measuring the response of a system to changes in the 
environment and providing the measurement to the process that produces the stimulus to 
the system, such as a controller. 

• Adapt: To change behavior using an active feedback process to achieve a goal in the 
presence of changes in the system or its environment. 

• Adaptive Controller: A controller with adjustable parameters and a mechanism for 
adjusting the parameters. The controller becomes nonlinear because of the parameter 
adjustment mechanism . 

• Adaptive Control System: An adaptive control system is formed using an adaptive 
controller to control a physical system that provides the feedback required to support the 
controller’s parameter adjustment mechanism. 

• Adaptive System: A system that changes behavior based on an active feedback process to 
achieve a goal in the presence of changes in the system or its environment. 

• Artificial Intelligence (AI): The branch of computer science associated with emulating 
aspects of human problem solving, perception, and thought. 

• Backpropagation: A learning method used in NN that uses the derivative of the activation 
function together with the error formed from the difference between the response and 
intended response (during training) or between the response and some representation of 
the intended response generated by a goal function during operations. 

• Classification: A method for statistical data analysis that groups input data into one of a 
number of discrete classes. 

• Clustering: A method for statistical data analysis that identifies similarities between 
features of the data and groups similar data items into clusters with similar features. 

• Controllability: An important property of a control system related to the ability of an 
external input (usually a control signal) to move the internal state of a system from any 
initial state to any other final state in a finite time interval. 
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• Controller: A computer algorithm that processes input commands and feedback from the 
dynamic system, and generates commands to the actuators of the dynamic system. The 
parameters of the controller can be: (a) fixed for conventional controllers, (b) provided by 
an external table-lookup process for gain-scheduled controllers, (c) provided by an 
external adaptive algorithm, or (d) refined internally by the adaptive controller. 

• Deterministic System: A system in which no randomness is involved in the development 
of future states of the system. Given the same input, a deterministic system will always 
produce the same output from a given initial state. This contrasts with stochastic or 
random systems in which future states are not determined from previous ones. 

• Direct Adaptive Control: Controller parameters are calculated directly by an adaptive 
approach. 

• Environment: The context in which a system operates. 

• Genetic Programming: An evolutionary algorithm methodology inspired by biological 
evolution to find computer programs that perform a user-defined task. 

• Indirect Adaptive Control: Controller parameters are calculated by a process that is 
separate from the adaptive approach. For example, an adaptive algorithm may refine 
estimates of an aerodynamic coefficient that is used subsequently in a fixed  
(non-adaptive) algorithm to calculate controller parameters. 

• Machine learning: A branch of AI concerned with the design and development of 
algorithms that enable computers to evolve behaviors. A major focus of machine learning 
research is to automatically learn (be trained) to recognize complex patterns and make 
intelligent decisions based on data. Statistical techniques are typically used to achieve 
these means. 

• Middleware: Software that is structured to reside between the operating system and the 
application, mediating the interaction between them by providing a standard collection of 
components and services from which to build distributed systems. 

• Optimization: The selection of a “best” element from some set of available alternatives. 

• NNs (also artificial neural network ): A network of neurons that are connected according 
to a prescribed topology. Note that there is no standard structure for NN topology. 
However, a common structure consists of an input layer of neurons, connected to one or 
more intermediate layers (called “hidden layers”), which are connected to an output layer. 

• Neuron: A basic computation element of the NN [1], consisting of a weighted sum of 
inputs passed through an activation function. 

• Nondeterministic System: A system in which random processes influence the 
development of future states of the system. If a nondeterministic system is given some 
initial inputs, the system may produce a different state for each run. 
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• Observability: Related to the possibility of observing the state of a system through output
measurements. In control theory, observability is a measure for how well internal states
of a system can be inferred through knowledge of its external outputs.

• Reference Model: A model that describes the desired response of the physical system
operating in its environment.

• Regression: A method of statistical analysis that identifies mathematical relationships
among variables.

• Reinforcement Learning: The system learns by interaction with the environment to
optimize an accumulated reward. Reinforcement learning occurs by making intermediate
decisions to explore previously unselected actions (exploration) or selecting actions based
on experience (exploitation).

• Robustness: The quality of maintaining designed controller stability and performance
properties in the presence of uncertainties in the system or unmodeled disturbances.

• Self-adaptive reflective middleware: Middleware that uses reflective computation to
adapt its behavior in response to evolving conditions, such as system performance.

• Stability: A system is stable if every bounded (limited) input produces a bounded output.
Stability is quantified by gain and phase margins for frequency domain analysis and by
positive damping for time-domain analysis.

• Stochastic Search Method: A search method that makes use of random numbers and is
able to find good solutions reasonably quickly without guaranteeing the optimum.

• Supervised Learning: Learning that is accomplished with predetermined sets of data that
represent input and response relations. Supervised learning is often called “training,” with
the predetermined data set called “training data.” Supervised learning can occur in an
operational setting if a model provides the intended input/response relationship, given the
same input provided to the system.

• System: A collection of hardware and software components organized to accomplish a
specific function or set of functions [2].

• Time to adaptation: The time scale required for an adaptive system to respond to changes
in the environment and modify its parameters. Note that, for adaptive control systems,
time to adaptation can define a transient period during which the system may experience
reduced stability or instability.

• Training: Learning using pre-operation knowledge that defines the appropriate response
to predefined stimuli.
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• Training Data: Data used to provide the NN with pre-operation knowledge. This data 
allows the NN to learn, by adjusting certain parameters, the appropriate response to 
predefined stimuli [1]. 

• Unsupervised Learning: Learning that applies statistical techniques to identify  
non-obvious relationships within the data. 
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APPENDIX C—DO-178B/C OBJECTIVES APPLIED TO ADAPTIVE SYSTEMS 

DO-178B/C 
Objective/ 

Section 
Objective 

Description 

What Is the Intent of 178B/C 
Objective(s)? 

[Ref: primarily DO-248C] 

Why Is the 178B/C Objective 
Difficult to Satisfy (for chosen 

adaptive system example)? 

Activities and Techniques Used To 
Satisfy 178B/C Objective 

(may involve use of system-level 
properties) 

A-2 Software 
development 
process 

• Systematic requirements
and design
decomposition.

• Complete capture of
software behavior.

A-2.1, A-2.4 HLRs and LLRs 
are developed 

• Capture of high-level and
LLRs

• Difficulty ensuring that system-
level stability and convergence
properties are retained as the
requirements are decomposed.

• The learned state space varies
based on operating
environment history. This can
increase the difficulty in
decomposing requirements to
the next lower level that define
complete software behavior
(e.g., Sys > HLR > LLR >
Source) with no unintended
functionality.

• Difficulty assessing impact of
derived software requirements
on adaptive system safety (joint
with systems and safety).

Activities 
• Decompose system-level

requirements to develop software
requirements and code such that:
 System safety properties are

retained through implementation.
 System safety assumptions and

constraints enforceable by
software are satisfied by software
requirements and implementation.

• System defined runtime monitors are
satisfied by software requirements
and implementation.

• Generate high-credibility evidence of
compliance with next higher level of
requirements.

Techniques 
• Reuse system-level analytical models

as software requirements (i.e., take

A-2.2, A-2.5 Derived HLRs and 
LLRs are defined 

• Capture of all derived
requirements.

• Ensure that safety
analysis is not
compromised by
improper implementation
of safety-related
requirements or
introduction of new
behavior not envisioned
by the safety analysis.

A-2.6 Source code is 
developed 

• Develop source code.
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software credit for system process 
outputs). 

• Apply software-level formal method
techniques (e.g., model checking,
compositional verification, static
analysis, program synthesis, runtime
analysis) to ensure:
 System-level stability and

convergence properties are
retained in the software
requirements and implementation.

 System-level assumptions and
constraints allocated to software
are properly decomposed and
implemented.

A-2.7 EOC is produced 
and integrated in 
the target computer 

• Not more difficult.

A-3, A-4, A-
5, A-6, A-7 

Software 
verification process 

• Apply layers of
verification.

• Ensure detection and
removal of errors early in
the development
processes.
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A-3 Verification of 
software 
requirements 
process 

• Ensure correct, consistent
HLRs.

• Ensure completeness
implementation of system
requirements
(completeness).

A-4 Verification of 
software design 
process 

• Ensure correct, consistent
LLRs.

• Ensure full
implementation of HLRs
(completeness).

A-5 Verification of 
software coding 
process 

• Ensure correct, consistent
source code.

• Ensure full
implementation of LLRs
(completeness).
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Compliance, 
Compatibility 

A-3.1, A-4.1, 
A-4.8, A-5.1, 
A-5.2, A-5.8 

• Software HLRs
comply with
system
requirements.

• LLRs comply
with HLRs.

• Software
architecture is
compatible with
HLRs.

• Source code
complies with
LLRs.

• Source code
complies with
software
architecture.

• Parameter data
item file is
correct and
complete.

• Ensure that functional,
performance, and safety-
related systems
requirements are
satisfied.

• Ensure that derived HLRs
are justified and correctly
defined.

• Ensure that HLR are
satisfied.

• Ensure that derived LLR
are justified and correctly
defined.

• Ensure that software
architecture does not
conflict with HLRs.

• Ensure the source code is
accurate and complete
with respect to LLRs.

• Ensure that there is no
undocumented
functionality.

• Ensure that source code
matches architecture data
flow and control flow.

• Ensure that HLRs are
satisfied with respect to
parameter data item file
(e.g., database).

• Difficulty verifying (via
reviews) that system-level
stability and convergence
properties remain intact
through decomposition and
implementation.

• Difficulty verifying (via
reviews) that system and safety
requirements are decomposed
into HLRs and LLRs correctly
and implemented in source
code correctly.

• Difficulty verifying (via
reviews) that HLRs, LLRs, and
source code capture the
complete evolving adaptive
system software behavior.

Activities 
• Verify that the software requirements

and code:
 Exhibit system safety properties.
 Satisfy system safety assumptions

and constraints allocated to
software.

 Satisfy runtime monitor next
higher level requirements.

• Generate high-credibility evidence of
compliance with next higher level of
requirements.

Techniques 
• Apply software-level formal method

techniques (e.g., model checking,
compositional verification, static
analysis, program synthesis, runtime
analysis) to ensure:
 System level stability and

convergence properties are
retained in the software
requirements and implementation.

 System level assumptions and
constraints allocated to software
are properly decomposed and
implemented.
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Accuracy, 
Consistency 

A-3.2, A-4.2, 
A-4.9, A-5.6 

• HLRs are
accurate and
consistent.

• LLRs are
accurate and
consistent.

• Software
architecture is
consistent.

• Source Code is
accurate and
consistent.

• HLRs are accurate,
unambiguous, sufficiently
detailed, consistent.

• LLRs are accurate,
unambiguous, sufficiently
detailed, consistent.

• Ensure that correct
relationship exists
between the components
of the software
architecture.

• Ensure that source code is
correct and consistent
with respect to stack
usage; fixed point
arithmetic overflow and
resolution; resource
contention; worst-case
execution timing;
exception handling; use
of uninitialized variables
or constants; unused
variables or constants;
and data corruption due to
task or interrupt conflicts.

• Difficulty verifying (via
reviews) accuracy and
consistency attributes.

• Adaptive system learned state
space makes it more difficult to
determine and verify worst-
case critical computer resource
usage and margins (memory,
throughput, WCET etc.).

Activities 
• Verify that the software requirements

and code:
 Are accurate and consistent with

respect to system safety
properties.

 Are accurate and consistent with
respect to system safety
assumptions and constraints
allocated to software.

 Properly implement system-
defined computational resource
constraints and monitors.

Techniques 
• Apply software-level formal method

techniques (e.g., model checking,
compositional verification, static
analysis, program synthesis, runtime
analysis).
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Compatibility 
With Target 

A-3.3, A-4.3, 
A-4.10 

• HLRs are
compatible with
target
computer.

• LLRs are
compatible with
target
computer.

• Software
architecture is
compatible with
target
computer.

• Ensure compatibility with
hardware (e.g., resource
utilization)

• Adaptive system learned state
space makes it more difficult to
determine and verify worst-
case critical computer resource
usage and margins (memory,
throughput/WCET, etc.).

Activities 
• Verify that the software requirements

and code properly implement system-
defined computational resource
constraints and runtime monitors.

Techniques 
• Apply software-level formal method

techniques (e.g., model checking,
compositional verification, static
analysis, program synthesis, runtime
analysis).
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Verifiability 

A-3.4, A-4.4, 
A-4.11, A-5.3 

• HLRs are
verifiable.

• LLRs are
verifiable.

• Software
architecture is
verifiable.

• Source code is
verifiable.

• Ensure that HLRs can be
verified.

• Ensure that LLRs can be
verified.

• Ensure that architecture
can be verified.

• Ensure that architecture is
deterministic and
predicable.

• Ensure that source code
can be verified.

• Difficulty assessing if HLRs,
LLRs, and source code can be
verified (by test) for all
adaptive system configurations.

• Difficulty verifying HLRs,
LLRs, and source code produce
deterministic (predictable)
behavior.

Activities 
• Identify test and non-test verification

techniques for requirements,
architecture, and source code.

Techniques 
• Select appropriate software-level

formal method techniques (e.g.,
model checking, compositional
verification, static analysis, program
synthesis, and runtime analysis).

Notes 
• Software aspects of certification of an

adaptive system will likely require a
greater reliance on verification by
analysis or simulation for objectives
related to verification by test

• Our chosen adaptive system is
deterministic given fully defined
initial conditions (including learned
state space values).
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Conformance 
to Standards 

A-3.5, A-4.5, 
A-4.12, A-5.4 

• HLRs conform
to standards.

• LLRs conform
to standards.

• Software
architecture
conforms to
standards.

• Source code
conforms to
standards.

• Ensure that HLRs are
consistent with HLR
standards.

• Ensure that LLRs are
consistent with design
standards.

• Ensure that architecture is
consistent with design
standards.

• Ensure that source code is
consistent with coding
standards.

• Might not be more difficult for
an adaptive system.
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Traceability 

A-3.6, A-4.6, 
A-5.5 

• HLRs are
traceable to
system
requirements.

• LLRs are
traceable to
HLRs.

• Source code is

System requirements trace to 
HLR: 

• Ensure that HLRs fulfill
system requirements.

• Ensure that all the system
requirements (including
safety requirements)
allocated to software are
incorporated in the HLRs.

HLR trace to system 
requirements: 

• Identification of
functionality not
explicitly required by
system requirements.

• Ensure that derived HLRs
are captured, justified and
fed back to safety
process.

HLR trace to LLR: 
• Ensure LLRs fulfill

HLRs.

LLR trace to HLR: 
• Identification of

functionality not
explicitly required by
HLRs.

• Ensure that derived LLRs
are captured, justified and
fed back to safety
process.

• Difficulty verifying that trace
demonstrates complete
requirements decomposition
and implementation of all
intended functionality (i.e.,
complete behavior of an
adaptive system).

• Difficulty verifying that the
trace demonstrates absence of
unintended functionality.

Activities 
• Verify that the software requirements

and code:
 Exhibit system safety properties.
 Satisfy system safety assumptions

and constraints allocated to
software.

 Satisfy runtime monitor next
higher level requirements.

Techniques 
• Apply software-level formal method

techniques (e.g., model checking,
compositional verification, static
analysis, program synthesis, runtime
analysis) to ensure:
 System level stability &

convergence properties are
retained in the software
requirements and implementation.

 System level assumptions &
constraints allocated to software
are properly decomposed and
implemented.
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traceable to 
LLRs. 

LLR trace to Source Code: 
• Ensure Source Code

fulfill LLRs.
Source code trace to LLR: 
• Expose any source code

functionality (intended or
unintended) that is
unsupported by the LLRs.

• Ensure that unintended
functionality is removed.

Algorithm 
Accuracy 

A-3.7, A-4.7 

• Algorithms are
accurate for
HLR.

• Algorithms are
accurate for
LLR.

• Ensure accuracy and
behavior of HLR
algorithms.

• Ensure accuracy and
behavior of LLR
algorithms.

• Difficulty verifying (via
reviews) that system-level
stability and convergence
properties are retained through
requirements decomposition
and implementation.

Activities 
• Verify that the software requirements

and code:
 Have accurate algorithms with

respect to system safety
properties.

 Have accurate algorithms with
respect to system safety
assumptions and constraints
allocated to software.

 Have accurate algorithms with
respect to runtime monitors.

Techniques 
• Apply software-level formal method

techniques (e.g., model checking,
compositional verification, static
analysis, program synthesis, runtime
analysis).
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Partitioning 
Integrity 

A-4.13 

Software 
partitioning 
integrity is 
confirmed. 

• Ensure that partitioning
breaches are prevented or
isolated.

• Possibly no more difficult for
an adaptive system.

Completeness, 
Correctness 

A-5.7 

Output of software 
integration process 
is complete and 
correct. 

• Ensure results of the
integration process are
complete and correct.

• Possibly no more difficult for
an adaptive system.

A-5.9 (Verification of 
coverage. 
Combined with A-
7.3, A-7.4) 

A-6 Software testing 
process 

• Ensure that EOC satisfies
HLR and LLR.

• Ensure that EOC is
robust.

A-6.1, A-6.3 • EOC complies 
with HLRs 

• EOC complies
with LLRs

• Ensure that EOC satisfies
HLRs for normal range
inputs

• Ensure that EOC satisfies
LLRs for normal range
inputs

• Difficulty developing normal
range test cases for all possible
input space and learned state
space

• Difficulty developing adequate
set of robustness test cases to
expose unintended
functionality.

• Difficulty assuring software
dynamic stability and

Note: 
• Software aspects of certification of an

adaptive system will likely require a
greater reliance on verification by
analysis or simulation for objectives
related to verification by test

• Certification process will likely need
to allow for the use of multi-layered
verification methods.

Activities 
• Verify that the EOC:A-6.2, A-6.4 • EOC is robust • Ensure that EOC is robust 
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with HLRs. 

• EOC is robust
with LLRs.

such that it can continue to 
operate correctly despite 
abnormal inputs and 
conditions 

• Ensure that failure
detection and recovery
capabilities are effective
and robust in mitigating
hazards.

convergence by test for all 
adaptive system learned states. 

• Verification by test is likely
inadequate to show EOC is
correct for all possible adaptive
system behavior.

 Exhibits system safety properties
 Satisfies system safety

assumptions and constraints
allocated to software.

 Satisfies runtime monitor
requirements.

• Generate high-credibility evidence of
EOC compliance.

Techniques 
• Apply software-level formal method

techniques (e.g., model checking,
compositional verification, static
analysis, program synthesis, runtime
analysis) to ensure:
 System level stability and

convergence properties are
retained in the software
requirements and implementation.

 System level assumptions and
constraints allocated to software
are properly decomposed and
implemented.

• Apply formal method techniques to
develop normal/robust test cases and
expected results for input space and
learned state space.

• Monte Carlo simulations.
• Need an analytical method for

establishing “equivalence classes” for
learned state space.
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• Continuity-based equivalency class
partitioning.

A-6.5 EOC is compatible 
with target 
computer. 

• Ensure compatibility
with hardware (e.g.,
resource utilization).

• Ensure detection of
target-related errors or
compiler target-specific
errors.

• Learned state space makes it
more difficult to test worst-case
resource utilization.

Activities 
• Verify that the software requirements

and code properly implement system-
defined computational resource
constraints and runtime monitors.

Techniques 
• Apply software-level formal method

techniques (e.g., model checking,
compositional verification, static
analysis, program synthesis, runtime
analysis).

A-7 Verification of 
verification 
process. 

• Ensure thorough testing
of the EOC.

• Ensure completeness of
HLR and LLR testing
requirements based test
coverage.

• Ensure completeness of
HLRs and LLRs
(Structural coverage).

• Ensure that unintended
functionality is exposed
(Structural coverage).
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A-7.1 Test procedures are 
correct. 

• Ensure that test cases
were accurately
developed into test
procedures and expected
results.

• Difficulty predicting correct
expected results covering the
input space, learning state
space and dynamic states (e.g.,
converging, converged)..

Activities 
• Develop test/analysis/simulation

cases into test/analysis/simulation
procedures.

Techniques 
• Apply formal method techniques to

develop normal/robust test cases and
expected results for input space and
learned state space.

A-7.2 Test results are 
correct and 
discrepancies 
explained. 

• Ensure that test results
are correct and that
discrepancies between
actual and expected
results are explained.

• Possibly no more difficult for
an adaptive system.



C
-15

A-7.3, A-7.4, 
A-5.9 

Test coverage of 
HLRs is achieved. 

Test coverage of 
LLRs is achieved. 

Verification of 
parameter data item 
file is achieved. 

• Ensure completeness of
HLR test cases.

• Ensure completeness of
LLR test cases.

• Ensure completeness of
verification with respect
to parameter data item
file (e.g., database)
elements.

• Difficulty developing normal
range test cases for all adaptive
system behavior.

• Difficulty developing adequate
set of robustness test cases to
expose unintended
functionality.

• Difficulty assuring software
dynamic stability and
convergence by test for learned
state space and input space.

Note: 
• Software aspects of certification of an

adaptive system will likely require a
greater reliance on verification by
analysis or simulation for objectives
related to verification by test.

• Certification process will likely need
to allow for the use of multi-layered
verification methods. Test coverage
trace may need to be expanded to test,
analysis, and simulation coverage
trace.

Activities 
• Ensure complete

test/analysis/simulation coverage
trace.

Techniques 
• Augment testing with software-level

formal method techniques (e.g.,
model checking, compositional
verification, static analysis, program
synthesis, runtime analysis) to ensure:
 System level stability and

convergence properties are
retained in the software
requirements and implementation.

 System level assumptions and
constraints allocated to software
are properly decomposed and
implemented.

• Monte Carlo simulations.



C
-16

A-7.5 Test coverage of 
software structure 
(modified 
condition/decision) 
is achieved. 

• Ensure completeness of
HLRs and LLRs.

• Ensure that unintended
functionality is exposed.

• Ensure that unreachable
code is exposed.

• Ensure that the compiler
does not inject
functionality that was not
specified in the source
code.

• Ensure that requirements
are sufficiently detailed
(similar decision
structure as the code).

• Structural coverage analysis
insufficient to measure
completeness of
test/analysis/simulation of all
possible input space and
learned state space.

Activities 
• Ensure complete decision/statement

coverage.

Techniques 
• Static analysis tools. Rely on FM

proofs to verify all program path
executions.

• Would still not be adequate for
MC/DC or decisions unrelated to
branching.
 Need an analytical method to

measure verification coverage
completeness of learned state
space.

A-7.6 Test coverage of 
software structure 
(decision coverage) 
is achieved. 

A-7.7 Test coverage of 
software structure 
(statement 
coverage) is 
achieved. 

A-7.8 Test coverage of 
software structure 
(data coupling and 
control coupling) is 
achieved. 

• Ensure test coverage with
respect to the software
architecture (specifically
the data flow between
software components and t
control of software
component execution).

• Ensure that a sufficient
amount of hardware/
software integration
testing and/or software
integration testing to
verify that the software
architecture is correctly
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implemented with 
respect to the 
requirements. 

A-7.9 Verification of 
additional code that 
cannot be traced to 
source code is 
achieved. 

• Ensure that the EOC is
evaluated for any
functionality added by
the compiler.

• Ensure that compiler
added functionality has
no safety impact.

12.2 Tool qualification. • Ensure that tool provides 
confidence at least 
equivalent to that of the 
process(es) eliminated, 
reduced or automated. 

• Difficulty with tool
qualification of development
tools (TQL-1 through TQL-4)
for the auto generation of
adaptive source or object code.

• Difficulty with tool
qualification of verification
tools (TQL-4 or TQL-5)
intended to simulate all
operating conditions or invoke
complete (evolving) software
behavior.

HLR = high-level requirement; LLR = low-level requirement; EOC = executable object code; TQL = tool qualification level; WCET = 
worst-case execution time 
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