
DOT/FAA/TC-16/4

Federal Aviation Administration
William J. Hughes Technical Center
Aviation Research Division
Atlantic City International Airport
New Jersey 08405

Verification of Adaptive Systems

April 2016

Final Report

This document is available to the U.S. public
through the National Technical Information
Services (NTIS), Springfield, Virginia 22161.

This document is also available from the Federal Aviation
Administration William J. Hughes Technical Center at
actlibrary.tc.faa.gov.

U.S. Department of Transportation
Federal Aviation Administration

NOTICE

This document is disseminated under the sponsorship of the U.S.
Department of Transportation in the interest of information exchange. The
U.S. Government assumes no liability for the contents or use thereof. The
U.S. Government does not endorse products or manufacturers. Trade or
manufacturers’ names appear herein solely because they are considered
essential to the objective of this report. The findings and conclusions in
this report are those of the author(s) and do not necessarily represent the
views of the funding agency. This document does not constitute FAA
policy. Consult the FAA sponsoring organization listed on the Technical
Documentation page as to its use.

This report is available at the Federal Aviation Administration William J.
Hughes Technical Center’s Full-Text Technical Reports page:
actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF).

Technical Report Documentation Page
1. Report No.

DOT/FAA/TC-16/4

2. Government Accession No. 3. Recipient's Catalog No.

 4. Title and Subtitle

VERIFICATION OF ADAPTIVE SYSTEMS

5. Report Date

April 2016
6. Performing Organization Code

7. Author(s)
Chris Wilkinson1, Jonathan Lynch1, Raj Bharadwaj1, and Kurt Woodham2

8. Performing Organization Report No.

9. Performing Organization Name and Address

1Honeywell International Inc.
1985 Douglas Drive N
Golden Valley, MN 55422-3935
2NASA Langley Research Center
Mail Stop 130
Hampton, VA 23681-2199

10. Work Unit No. (TRAIS)

11. Contract or Grant No.

IA1-1073, DFACT-10-X-00008
12. Sponsoring Agency Name and Address

FAA National Headquarters
950 L'Enfant Plaza North, S.W.
950 L’Enfant Plaza
Washington, DC 20024

13. Type of Report and Period Covered

Final Report

14. Sponsoring Agency Code

AIR-134
15. Supplementary Notes

The Federal Aviation Administration William J. Hughes Technical Center Aviation Research Division COR was Charles Kilgore.
16. Abstract

Adaptive software, which has the ability to change behavior at runtime in response to changes in the operational environment,
system configuration, resource availability, or other factors, has been an active research topic, but with limited use to date in the
aviation domain. Progress in adaptive flight control systems and plans for using adaptive systems in the Next Generation Air
Transportation System, however, are compelling an examination of requirements for verification of these systems for commercial
applications. This report documents the findings of a two-phase research study of software assurance requirements for adaptive
systems, especially from the perspective of RTCA/DO-178B and C. Phase 1 of the study was conducted by NASA Langley
Research Center and Phase 2 was conducted by Honeywell International Inc.

17. Key Words

Adaptive systems, Neural networks, Machine learning,
Verification, Assurance, Model-based development, Formal
methods

18. Distribution Statement

This document is available to the U.S. public through the
National Technical Information Service (NTIS), Springfield,
Virginia 22161. This document is also available from the
Federal Aviation Administration William J. Hughes Technical
Center at actlibrary.tc.faa.gov.

19. Security Classif. (of this report)

 Unclassified

20. Security Classif. (of this page)

 Unclassified

21. No. of Pages

 104

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

ACKNOWLEDGEMENTS

Research reported in this document was supported under Interagency Agreement IA1-1073,
DTFACT-10-X-00008 between the Federal Aviation Administration (FAA) and NASA Langley
Research Center (NASA-LaRC). The research was divided into two parts: Phase 1 performed by
NASA-LaRC, and Phase 2 performed by Honeywell International Inc., under subcontract to
NASA-LaRC. Completion of this research project would not have been possible without the
support of Charles Kilgore, the FAA Contracting Officer’s Representative, and Barbara
Lingberg, the FAA sponsor for the FAA’s Software and Digital Systems Research Program.

iii

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY x

1. INTRODUCTION 1

1.1 Overview of Phase 1 Activities 2
1.2 Overview of Phase 2 Activities 3

2. TERMINOLOGY 3

3. UNDERSTANDING ADAPTIVE APPROACHES 6

3.1 The Feedback Process 6
3.2 Life Cycle Context 8
3.3 Learning Method 8
3.4 Role of Adaptation 10

4. USE OF ADAPTIVE ALGORITHMS AND THEIR ROLE IN ADAPTIVE
SYSTEMS’ EVALUATION 11

4.1 NNS 11

4.1.1 Fundamental Concepts in NNs 11
4.1.2 Example Application of an NN 14
4.1.3 Observations Concerning NNs 16

4.2 Genetic Algorithms 16
4.3 Reflection/Autonomic Computing 17
4.4 Supporting Technologies 18

5. ADAPTIVE CONTROLS AND THEIR USE IN ADAPTIVE SYSTEMS 18

5.1 Control System Overview 18

5.1.1 Controllability/Observability 19
5.1.2 Stability 19
5.1.3 Robustness 20
5.1.4 Robustness of Non-Adaptive Control Systems 20
5.1.5 Robustness of Adaptive Control 21
5.1.6 Airworthiness Terminology Relevant to Stability/Robustness 21

5.2 Adaptive Control System Architectures 22

iv

5.2.1 Model Reference Adaptive Control 22
5.2.2 Model Identification Adaptive Control 23
5.2.3 Model-Free Adaptive Control 24
5.2.4 Adaptive Augmentation 24
5.2.5 L1 Adaptive Control 25

6. INITIAL IDENTIFICATION OF SAFETY ISSUES 25

6.1 Impact of Life Cycle Context on Safety 26
6.2 Impact of the Role of Adaptation on Safety 26
6.3 Safety Concerns for Adaptive Algorithms 29

6.3.1 NNS 29
6.3.2 Genetic Algorithms 29
6.3.3 Reflection/Autonomic Computing 30
6.3.4 Adaptive Controls 30

7. INITIAL PHASE 2 ACTIVITIES 30

8. CURRENT CERTIFICATION GUIDANCE AND STANDARDS 33

8.1 ARP-4754A Guidelines for Development of Civil Aircraft and Systems 34

8.1.1 Discussion of Recent Changes to ARP-4754 36
8.1.2 Identified Textual Changes Within ARP-4754A 38

8.2 ARP-4761 Guidelines and Methods for Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment 40

8.3 Software Design Assurance 40

9. ADAPTIVE SYSTEM CERTIFICATION 41

9.1 Concerns Regarding the Feasibility of Applying DO-178B to Software Design
Assurance of Adaptive Systems 41

9.2 Suggested Approach to Software Design Assurance of Adaptive Systems 42
9.3 System-Level Approaches to the Certification of Adaptive Systems 43
9.4 Defining the System-Level Characteristics of an Adaptive System 44

10. ASPECTS OF TOOL QUALIFICATION FOR ADAPTIVE SYSTEMS 47

11. RECOMMENDATIONS 47

11.1 Recommendations for Derivation and Validation of Adaptive System Safety
and Functional Requirements 48

11.2 Recommendations for Adaptive System Requirements Verification 49

12. FUTURE ADAPTIVE SYSTEMS CERTIFICATION RESEARCH NEEDS 50

v

13. SUMMARY 50

14. REFERENCES 52

APPENDIX A—TERMINOLOGY A-1
APPENDIX B—LITERATURE SEARCH RESULTS B-1
APPENDIX C—DO-178B/C OBJECTIVES APPLIED TO ADAPTIVE SYSTEMS C-1

vi

LIST OF FIGURES

Figure Page

1 Elements of the feedback process 7

2 Model of a neuron 12

3 NN topology 12

4 Gradient descent learning rules 14

5 Comparison of fuel measurement system approaches 15

6 Closed loop control system 19

7 Control system with gain scheduling 21

8 MRAC 23

9 MIAC 23

10 Model-Free Adaptive Control 24

11 Adaptive augmentation 25

12 Adaptive system taxonomy 31

13 Example of flight control architecture 32

14 Certification process flow and applicable standards 34

15 ARP-4754 and ARP-4754A sections mapping 37

16 In/Out mapping of ARP-4754 and ARP-4754A 37

vii

LIST OF TABLES

Table Page

1 Role of statistical techniques and representative applications 11

2 ARP-4754A invocation 36

3 DO-178B invocation 41

4 System safety objectives for adaptive systems 45

viii

LIST OF ACRONYMS

AC Advisory Circular
AI Artificial intelligence
ANN Artificial neural network
ATM Air traffic management
CFR Code of Federal Regulations
CRI Certification review item
CS Certification Specification
DAL Design Assurance Level
EASA European Aviation Safety Agency
EuroCAE European Organization for Civil Aviation Equipment
FAA Federal Aviation Administration
FC Failure condition
FDAL Functional development assurance level
FM Formal methods
HLR High level requirement
IDAL Item development assurance level
MBD Model-based design
MRAC Model Reference Adaptive Control
MIAC Model Identification Adaptive Control
NAS National Airspace System
NASA-LaRC National Aeronautics and Space Administration Langley Research Center
NextGen Next Generation Air Transportation System
NN Neural network
STC Supplemental type certificate
TC Type certificate
TSO Technical Standard Order
V&V Verification and validation
VHM Vehicle health management
WCET Worst-case execution time

ix

EXECUTIVE SUMMARY

This report documents the accomplishments of Phase 1 and Phase 2 of the Verification of
Adaptive Systems research task, under Interagency Agreement IA1-1073, DTFACT-10-X-
00008, between the Federal Aviation Administration and NASA Langley Research Center
(NASA-LaRC). This research study addresses verification and safety assurance issues for the use
of adaptive systems such as those planned for the Next Generation Air Transportation System
and the National Airspace System air traffic control system. An adaptive system was defined as a
system that changes behavior based on an active feedback process in the presence of changes in
the system or its environment. Requirements for system safety assurance are based on the
general concept that correct behavior of a system can be specified, predicted, and verified prior
to operation. Consequently, any proposed use of adaptive systems that violates that concept
raises issues that must be evaluated. The goal of this research was to conduct a preliminary
examination of what is necessary to provide sufficient assurance that an adaptive system is safely
used in an aircraft product from a software perspective.

The research in both phases of this effort targeted understanding the applicability of existing
software assurance requirements, especially those in RTCA/DO-178B, “Software Considerations
in Airborne Systems and Equipment Certification,” and the recently released update to DO-
178C, with its corresponding supplements, for adaptive systems. Work for Phase 1 was
performed by NASA-LaRC, and the Phase 2 work was performed by Honeywell International
Inc., under subcontract to NASA-LaRC.

The Phase 1 effort focused on understanding the latest current technology in machine learning
and the mechanisms that could cause an aircraft system to adapt or change behavior, in response
to change in its environment. Understanding the mechanisms used for adapting is essential to
understanding the impact on software assurance. Much of the work in the initial phase consisted
of gathering information on the broad field of machine learning, how machine learning is used to
enable a system to adapt (especially with respect to feedback processes), and where machine
learning is being used in various domains (with particular interest in controls applications).
Research is reported in five areas for Phase 1: 1) terminology; 2) understanding adaptive
approaches; 3) the use of adaptive algorithms and their role in adaptive systems’ evaluation; 4)
adaptive controls and their use in adaptive systems; and 5) initial identification of safety issues.

In Phase 2, the disparate information on different types of adaptive systems developed under
Phase 1 was condensed into a useful taxonomy of adaptive systems. As evident from the
taxonomy, the wide range of factors relevant to adaption makes it clear that the applicability of
the DO-178C objectives will likely differ depending on the type of adaptive system. Therefore,
determining the applicability of the current software assurance process is extremely difficult for
the general case (that is, for adaptive systems in general), but possible for a specific adaptive
system. Consequently, the Honeywell team examined an exemplar adaptive system and
evaluated how the output of that controller can be predicted and verified in compliance with
system safety and assurance standards. A significant product of this evaluation is a table,
provided in appendix C, that describes the impact of the exemplar adaptive system on each DO-
178C objective. In addition, a number of system-level objectives were identified that may be
necessary to ensure that adequate verification of an adaptive system is possible. The importance

x

of considering adaptive systems starting at the system level is discussed, along with
recommendations for follow-on work in AS safety and verification requirements.

xi

1. INTRODUCTION

In the “Decadal Survey of Civil Aeronautics: Foundation for the Future” [1], the National
Research Council identified intelligent and adaptive systems as one of the five common threads
for the “51 high-priority R&T challenges.” In general, adaptive systems are defined as those that
have the ability to change behavior in response to changes in their operational environment,
system configuration, resource availability, or other factors. Adaptive systems have been used
effectively in a number of application domains, from industrial plant control to missile guidance,
though they have not been used in civil aviation. However, that is expected to change. The
decadal survey explicitly identified adaptive systems technologies to be the key enablers for
intelligent flight controls; advanced guidance and adaptive air traffic management (ATM)
systems; and for health management techniques to extend life and improve maintenance.

Adaptive flight and engine control systems have been researched for decades and are attractive
for several reasons. There are adaptive systems that have the ability to detect, anticipate, and
prevent failures and reconfigure various aircraft systems (e.g., displays or controls) in response;
some that simply improve or optimize performance in a changing operational environment; and
others that can detect performance degradation due to failure or damage. Expected growth in air
traffic is another reason to research the potential. The Next Generation Air Transportation
System (NextGen) Integrated Work Plan [2], for example, describes “net-enabled adaptive
control of ground, airborne and satellite weather observation sensors in real time” as an enabling
capability to meet needs for improved weather observations. Adaptive systems are also being
proposed for management of human machine interactions on aircraft and ATM systems to
mitigate safety incidents due to failures at the human machine interface. In this case, the
emphasis is on the system behavior that adapts to the current context (e.g., tasks, user state,
system configuration, environmental states, etc.).

The use of advanced computational techniques, such as those that underlie adaptive systems, is
not a new topic in the aviation domain. In 1994, the Federal Aviation Administration (FAA)
published a chapter in their Digital Systems Validation Handbook titled “Artificial Intelligence
with Applications for Aircraft” [3]. Artificial intelligence (AI) is a broad and rapidly expanding
field of technology “devoted to computer programs that will mimic the product of human
problem solving, perception, and thought” [3]. The handbook chapter provided an overview of
AI technology, focusing on expert systems, and identified potential certification issues for
aviation systems that would use those technologies. At that time, expert systems were intended to
automate procedures that were already known and serve as assistants or advisors instead of
primary decision tools. Today, expert systems are safely used in that capacity in aviation
applications.

Adaptive systems, however, have succeeded expert systems as the next AI technology for
aviation applications. Adaptive technologies, such as neural networks (NN), can be introduced
into the design of a system to achieve a goal such as enhancing performance or efficiency;
maintaining desirable behavioral traits, such as robustness; or responding to changes in the
system or its environment. Research supported by Eurocontrol investigated an NN-based system
for automatic recognition and diagnosis of safety-critical, non-nominal events in ATM for
improving safety monitoring for the Single European Sky ATM Research initiative [4].

1

Adaptive systems learn as they execute, thereby exhibiting behavior that can be less predictable
than traditional avionics systems. Because requirements for system safety assurance are based on
the concept that correct behavior of a system can be specified, predicted, and verified, any use of
adaptive systems in civil applications poses challenges in assuring safety by means of traditional
safety assurance methods and procedures. This includes understanding the impact of adaptation
on system requirements and design and software implementation and verification, because
adaptation is ultimately realized through software.

The primary aim of the Verification of Adaptive Systems task was to develop an understanding
of the ramifications of adaptive systems on software assurance. The task also aimed, to the extent
it was possible, to develop a rational and practical approach for the assurance of flight software
that uses adaptive techniques, potentially including approaches targeted at the system level. This
report documents the results of the two phases of research activity to accomplish those aims.

1.1 OVERVIEW OF PHASE 1 ACTIVITIES

Work on Phase 1 was performed by NASA Langley Research Center. Phase 1 research focused
on developing an understanding of the state-of-the-art in adaptive systems technology, especially
machine learning, and how adaptive technology is used or proposed to be used in aviation
applications, including controls. The following four objectives were defined for Phase 1:

Objective 1: Provide definitions of terminology associated with verifying adaptive systems in a

safety-critical airborne environment (e.g., adaptive system, NN, adaptive
software, AI, and deterministic).

Objective 2: Describe contrasting characteristics of adaptive systems and deterministic
systems, including relative benefits, strengths, and weaknesses.

Objective 3: Investigate the differences between an adaptive approach to system development
and a deterministic approach, and their effects on system and software
verification.

Objective 4: Identify safety issues when an adaptive, nondeterministic system approach is used
and propose mitigation techniques to address these in a safety-critical airborne
environment.

The intent of Phase 1 was to lay the groundwork necessary to identify the differences between
conventional and adaptive systems from both a requirements and design perspective, and
subsequently identify any unique software safety considerations that would not be addressed
using existing assurance processes, especially DO-178B [5]. Much of the Phase 1 effort involved
gathering information about machine learning and the current uses of adaptive systems in
industry, and trying to develop a cogent terminology set associated with the use of machine
learning in aviation applications.

Sections 2–6 of this report document the results of the Phase 1 effort. Section 2 provides an
overview of terminology issues for adaptive systems. Appendix A lists terms and definitions
relevant to adaptive systems. Section 3 describes fundamental aspects of adaptive approaches,
including strengths and weaknesses, with special emphasis on feedback processes. In section 4,
adaptive algorithms are discussed, including NNs, genetic algorithms, and reflective
programming. Section 5 presents different approaches to adaptive control. Section 6 then

2

provides an initial assessment of safety issues for adaptive systems. Section 7 contains a
summary of the Phase 1 work in preparation for Phase 2. Appendix B provides the results of the
literature search as a bibliography.

1.2 OVERVIEW OF PHASE 2 ACTIVITIES

Work in Phase 2 was performed by Honeywell International Inc. The Honeywell team started
with the foundational work in Phase 1, then focused Phase 2 activities on determining the extent
to which existing guidance in RTCA/DO-178B/C1 and associated supplements can provide the
basis for the assurance of adaptive systems, for which additional or alternate objectives and
activities might be necessary, and recommendations for additional research. Phase 2 objectives
were to:

Objective 5: Maximize the current use of DO-178B/C. Where aspects of adaptive systems

cannot be approved using DO-178B/C, provide recommendations for alternate
methods to be considered, including the viability of these methods using current
technology or as areas where additional research may be necessary.

Objective 6: Make recommendations for the safe use of adaptive systems, especially those

being planned for use in NextGen and National Airspace System (NAS) air traffic
control.

Objective 7: Provide effective outputs that can be used by the FAA for the development of

policy, guidance, and training.

Sections 7–12 of this report document the results of Honeywell's support for Phase 2. Section 7
provides a transition from Phase 1 activities to Phase 2, including a helpful taxonomy of adaptive
systems, based on the different adaptive system types and architectures. Section 8 provides an
overview of current certification guidance and standards, including those for system safety and
design assurance. Section 9 enumerates and demonstrates concerns about the feasibility of
applying DO-178B/C to adaptive systems through the analysis of the objectives against a
particular adaptive system. That analysis shows the implications of adaptation on activities and
objectives at the system level. Next, section 10 touches on aspects of tool qualification for
adaptive systems. Section 11 contains the recommendations for adaptive system safety, and
section 12 identifies some continuing research needs.

The report concludes with a brief summary of the research effort.

2. TERMINOLOGY

As with many technologies, especially those with application in many diverse domains, there
often lacks a standard vernacular used consistently across those domains. This is certainly the

1 During the course of this task, the DO-178B document was updated to DO-178C [6], and four supplementary documents (covering
object-oriented technology, model-based development, formal methods, and tool qualification) were approved by the RTCA Inc. Phase 2
activities considered the changes to those documents in the course of the research. The term DO-178B/C indicates that consideration.

3

case with adaptive systems. Work on this task started with an effort to define terminology
associated with adaptive systems, including terms such as “adaptive system”, “neural network”,
“adaptive software”, “artificial intelligence”, and “deterministic”. It did not take long to realize
that the terms often used when discussing adaptive systems in the aviation domain do not reflect
the latest technology current in machine learning. Consequently, the simple task of defining
terminology evolved into an effort to explore and understand the burgeoning world of machine
learning and its applicability to aviation applications.

Throughout this research effort, a list of relevant terms and definitions were compiled while
reviewing source material obtained through a broad literature search. The literature search for
this effort culminated in over 206 references, including textbooks; conference proceedings;
journal publications; standards and guidelines; industry papers; academic sites; and other online
resources. Appendix A contains a list of terms and definitions, and appendix B lists the results of
the literature search in a bibliography.

A few additional terms and definitions provide the context for the remainder of this report. The
first term is “adaptive system”. For this study, an adaptive system is one in which the behavior
changes in response to an active feedback process to achieve a goal in the presence of changes in
the system environment. That environment might be the computational environment, including
the components of the computing platform, such as middleware, or might be the physical or
external system in which the computer program operates. For airborne systems, changes to the
environment might include change to the physical structure of the aircraft or change in the
weather.

Behavior change, in response to an adaptive technique such as an NN, is not intended to imply
behavior change only when the system is operating in service. Behavior changes might be
explored during the design phase of a system, in which an adaptive algorithm is used to help
define the behavior of a system. In this case, at the end of the system design phase, the design
can be fixed such that the feedback mechanism is no longer needed and the behavior does not
adapt in real-time operation of that software. In other cases, the behavior change from the
feedback of an adaptive system may take place on a continuous basis in real-time operation
(referred to as a fully adaptive system), or only periodically (referred to as a partially adaptive
system).

The definition of adaptive system used in this report does not include the term “deterministic” or
its complement “nondeterministic”—terms that are often used to attempt to distinguish between
a system that adapts and one that does not. In appendix A, a deterministic system is defined as
one in which no randomness is involved in the development of future states of the system. Given
the same input, the future state of a deterministic system can be precisely determined or
predicted from knowledge of an initial system state and a predictable sequence of intermediate
states. In theory, determinism precludes the existence of randomness that influences the
intermediate states. A system influenced by random processes would be nondeterministic,
because the future state of the system cannot be uniquely predicted from a defined sequence of
intermediate states.

4

In practice, all physical systems have random processes or uncertainties at some level. For
example, there is likely to be noise in system electronics or in sensor data used within the
system. Being predictable does not necessarily imply that a deterministic system is free from any
random processes or other uncertainties; rather, the implication is that these factors do not cause
appreciable variations in the observed behavior of the system. Depending on the internal system
processes (such as filters applied to the sensor data), these effects may not be detectable at the
system interface, or their impact on the system behavior may be negligible. For example,
consider the case of multithreaded programs [7]:

Non-determinism, inherent in threaded applications, causes significant challenges
for parallel programmers by hindering their ability to create parallel applications
with repeatable results…

Application developers rely heavily on the fact that given the same input, a
program will produce the same output. Sequential programs, by construction,
typically provide this desirable property of deterministic execution. However, in
shared memory multithreaded programs, deterministic behavior is not inherent.
When executed, such applications can experience one of many possible
interleavings of memory accesses to shared data. As a result, multithreaded
programs will often execute non-deterministically following different internal
states that can sometimes lead to different outputs.

In this case, threaded programs can be considered deterministic if the uncertainties associated
with concurrency issues are properly considered in the software design. Though the exact central
processing unit cycle occupied by a particular floating point operation may vary dramatically
frame to frame, the important factor for deterministic behavior will likely be that the entire
computation is complete before the frame deadline.

For adaptive systems, the output may be deterministic or nondeterministic, depending on where
and how the feedback process is used. Because the terms “deterministic” and “nondeterministic”
are complex, those terms are not used in the remainder of this report. The issues of concern with
respect to software assurance are related to having sufficient understanding, predictability, and
verification of the effect of the adaptation; therefore, this report focuses on understanding that
process.

5

3. UNDERSTANDING ADAPTIVE APPROACHES

There are many dimensions to adaptive systems. According to McCormick [8], “adaptive
systems can be characterized by how aggressively they attempt to adapt to the unexpected. In the
simplest case, adaptive systems behave like a complex curve-fitting or pattern-matching
mechanism. In more complex cases, they are designed to learn continuously from their
environments.” The following four factors are important to understanding adaptive approaches
from this perspective, and understanding the issues relevant to assurance of systems using these
approaches:

1. The feedback process.
2. The system life cycle context where adaptation is actively used.
3. How learning takes place.
4. The role of the adaptive approach.

3.1 THE FEEDBACK PROCESS

The working definition for adaptation includes an active feedback process to modify behavior
towards a goal. The notion of active feedback provides a primary distinction between what is
truly an adaptive process and a process for which the response is preconfigured. For instance, an
onboard process may select a set of parameters through a table lookup function based on
airspeed and ambient temperature. The behavior of the supported process changes as new
parameters are pulled from the table and used in calculations; however, the change in behavior is
driven only by the variables used in selecting parameters that were preconfigured through a
priori analysis.

An adaptive system, on the other hand, essentially performs in situ design iterations by
monitoring the performance of the system against performance goals and making incremental
changes in its parameters until a reasonably optimal configuration is achieved. These updates are
generated based on the actual response of the system and not solely on design assumptions and
anticipated environmental conditions made in a priori analysis. In this case, the active feedback
process can respond to unanticipated events or conditions, resulting in systems that may be more
efficient or robust than their nonadaptive counterparts.

Given the importance of an active feedback process in identifying a system as adaptive, it is
helpful to take a more extensive look at feedback loops. In reference 9, four elements of
feedback processes are defined explicitly (see figure 1).

6

Figure 1. Elements of the feedback process

Discussing active feedback in terms of these four elements provides a way to contrast between
adaptive systems and nonadaptive systems. Nonadaptive systems have predetermined actions
that are based on a priori analysis of the assumed system characteristic operating in an assumed
environment. Consequently, the “decide” element for a nonadaptive system would select a
predefined response based on the conditions determined by “collect” and “analyze.” Conversely,
an adaptive process actively refines parameters and then evaluates their influence on
performance through the subsequent collection and analysis elements. That is, adaptive systems
include active refinement of parameters through the feedback process, whereas nonadaptive
systems use either fixed parameters or parameters that are passively selected from a
preconfigured set.

Certain strengths and weaknesses of adaptive systems, as compared with conventional systems,
can be identified from the perspective in figure 1. The primary strength of adaptive systems is
their capacity to refine their behavior based on actual in situ experience, rather than assumed
system or environmental properties. For conventional systems, design assumptions are typically
conservative to ensure that the system is robust against uncertainties; this will often lead to
suboptimal performance because the system design is a compromise over a range of conditions,
rather than optimized for a specific operating point. Therefore, the conventional tradeoff between
robustness and performance is partially eliminated through the use of a system that adapts in
operation because it can be both robust to changes in the system or its environment and
optimized for performance in its current conditions.

Though adaptation in response to feedback offers attractive benefits, it does come with some
weaknesses that are cause for concern. Convergence of the active feedback process is one such
concern that must be evaluated carefully. Of particular concern is whether the active feedback
process can find a globally optimal solution (that is, find the best solution out of all possible
candidates) within a time span that does not compromise system safety. This often becomes a
trade-off between time-to-convergence and achieving a globally-optimal solution, and this trade-
off has been the focus of a substantial amount of adaptive systems research.

Decide

Act

Collect

Analyze

7

A second related concern, which is also relevant to the active feedback path, is whether the
analysis and decision elements of the feedback process are focusing on the correct features
within the feedback signal. For example, it is possible to focus the adaptation on noise rather
than on the underlying signal that represents the true dynamics of the system, without sufficient
attention to mitigations to prevent this.

Finally, one strength of a conventional approach is that the critical performance parameters of
the system can be predicted (to some degree) for any given system configuration and
environmental condition, whereas the performance of an adaptive system can only be predicted if
the learning history of the system is known.

3.2 LIFE CYCLE CONTEXT

Identifying where the adaptation occurs in the system life-cycle is an important aspect of
adaptive systems. Adaptive systems can be divided into those that use adaptive approaches for
development only, typically to mature a design, and those for which the active feedback system
is active in real-time operation.

One benefit of using an adaptive approach during the design phase is that a detailed
understanding of the underlying physical process may not be necessary for the adaptive approach
to converge on an acceptable design solution. For example, if data is available to describe the
intended input/output behavior of a complex interaction, it may be feasible to train an NN to
replicate this behavior to a specified accuracy. In this case, a mathematical model of the
underlying process, based on principles of physics, thermodynamics, or other disciplines, does
not need to be derived. One of the major strengths of this approach is that it provides a means for
developing representations of complex systems for which derivation of a mathematical model by
hand may be prohibitively difficult or impossible.

By the same token, using an adaptive approach during the design phase may circumvent the need
for a detailed understanding of an underlying process. This is a weakness because the outcome of
the underlying process becomes encoded in the input and output data used to train the adaptive
process, and the structure of the NN algorithm that is trained on this data bears little to no
resemblance to the actual process being modeled. This leads to a lack of traceability between the
resulting algorithmic design and the underlying process being modeled. Additionally, it
underscores the necessity that the intended behavior be fully captured within the data used to
train the adaptive system as part of development.

3.3 LEARNING METHOD

Many of the adaptive approaches identified in this study fall under the auspices of machine
learning techniques. Machine learning is a branch of AI concerned with the development of
algorithms that allow computers to evolve behaviors based on observing and making statistical
inferences about data. A major focus of machine learning research is to automatically recognize
(learn or be trained to recognize) complex patterns and make intelligent decisions based on data.
As the computational power of computers has increased, so has the ability of algorithms to
evaluate large amounts of data to automatically recognize complex patterns, to distinguish
between exemplars based on their different patterns, and to make predictions. Many advances in

8

adaptive control algorithms, for example, are based on the ability to rapidly process data
representing the aircraft’s environment and make similarly rapid changes in parameters intended
to maintain stability when that environment changes unexpectedly.

Learning is accomplished through inductive inference—that is, making predictions based on
observations. These predictions are based on the observation of data that represents incomplete
information about statistical phenomenon and generalizing it into rules and making predictions
of missing attributes or future data. The process of learning from observations is often
characterized by three different types of learning: supervised, unsupervised, and reinforcement
learning:

• Supervised learning (or learning by example) is done with predetermined sets of data
representing input and response relations. The machine learning algorithm generates a
model in terms of a mathematical function of the relationship between input data and
response based on the predetermined training. This model can be used to predict the
response to input that was not included in the training data. Training data typically
consists of examples in the form of an input value or values paired with a desired output.

• Supervised learning can also occur in an operational context if a model is provided that
can describe the desired system response. Comparing the desired against the actual
response provides a means for measuring the performance of the adaptive system. Using
this performance measure in an active feedback loop provides a way for the adaptive
system to perform supervised learning while in operations.

• Unsupervised learning applies statistical techniques to identify non-obvious relationships
within the data. With this approach, the learning algorithm is not given any target
information to guide it nor is the algorithm given feedback based on previous decisions or
actions. In a sense, unsupervised learning can be thought of as finding patterns in the data
beyond what would be considered pure unstructured noise.

• Reinforcement learning involves mapping situations to actions to maximize a cumulative
reward obtained through a number of intermediate actions. Reinforcement learning is
often called “learning from experience” or “learning through interaction.” The learner is
not told which actions to take, as in supervised learning, but instead must discover which
intermediate actions yield the best results. In the most interesting and challenging cases,
actions may affect not only the immediate reward, but also the next situation and, through
that, all subsequent rewards. These two characteristics—trial-and-error search and
delayed reward—are often referred to as “exploration” and “exploitation” and are the two
most important distinguishing features of reinforcement learning.

In general, of the three types of learning methods, supervised learning poses the fewest
challenges with respect to verification.

9

3.4 ROLE OF ADAPTATION

Machine learning algorithms that enable adaptation are statistics-based algorithms designed to
identify complex patterns and make decisions based on data. The statistical task generally has
one of four purposes, associated with different application domains, as shown in table 1:

• Regression: Many application domains, such as controls or sensor processing, require an

accurate mathematical relationship of the physical system, its environment, or some
process within the system. When the exact relationship is unknown, a conservative
representation is often used because of uncertainties or approximations that are necessary
to reduce the complexity of the mathematical relationship to a reasonable level. In other
instances, the process, system, or environment is too complex for a mathematical
expression to be derived from physical principles associated with dynamics,
thermodynamics, or other related disciplines. Adaptive techniques such as NNs provide a
way for an accurate mathematical relationship to be generated from heuristic data:
representative input/output data is processed using statistical methods to converge on a
mathematical representation of the data. The resulting algorithm can then be fixed if it is
developed exclusively as part of the design process, or the adaptive process can continue
to refine the representation in operations. Continuous models developed using regression
analysis are often used in adaptive controls and parameter estimation applications.
Typically, this involves the use of supervised learning.

• Classification: Classification is closely associated with regression; however, the statistical

methods used for classification seek to place each input data item into one of a finite set
of possible outcomes. Statistical methods used for classification produce discrete models
that categorize the results, whereas regression analysis produces continuous models.
Some statistical methods used for classification generate new classes if a suitable match
is not found for a given input. In other approaches, the set of possible outcomes is fixed
in advance.

Classification can be used for situational awareness in which inputs are classified
according to features relevant to the monitor. Classification can also be used for pattern
recognition, such as image processing, where a best match is selected from an image
database on which the adaptive approach is trained. Classification typically involves
supervised learning, but can also include unsupervised learning for instances in which the
adaptive system is allowed to generate new classifications.

• Clustering: Clustering analysis assigns a set of objects into groups, called clusters, so that

the objects in the same cluster are more similar, in some sense or another, to each other
than to those in other clusters. Clustering is a statistical technique that is particularly
powerful in identifying relationships in the data that are not otherwise obvious through
conventional methods of data analysis. Clustering is often used as a data post-processing
technique to identify trends or indicators. Some forms of clustering are applicable to in
situ, real-time health monitoring environments in which they may be able to identify
precursors to adverse conditions. Clustering generally uses unsupervised learning.

10

• Optimization: Optimization is a statistical method that seeks to identify the best solution
to a given goal, while taking into account constraints on the solution. These solutions
typically involve a number of intermediate actions, and the optimization method uses a
balance between exploration of possible intermediate actions and exploitation of
intermediate actions that contribute to the optimal overall solution. Optimization typically
uses reinforcement learning in developing solutions and is particularly well-suited for
such applications as path planning and trajectory analysis.

Table 1. Role of statistical techniques and representative applications

Role Definition Applications
Regression Identifies mathematical relationships

among variables
• Adaptive Controls
• Continuous Models
• Parameter Estimation

Classification Classifies input data into one of a
number of discrete classes

• Monitoring
• Situational Awareness

Clustering Identifies similarities between features
of the data and groups similar data items
into clusters with similar features

• Monitoring
• Situational Awareness
• Data Post-Processing

Optimization The selection of a “best” element from a
set of available alternatives

• Planning
• Path/Trajectory Analysis

4. USE OF ADAPTIVE ALGORITHMS AND THEIR ROLE IN ADAPTIVE SYSTEMS’
EVALUATION

This section discusses some of the more common approaches or types of algorithms used to
implement the statistical analyses used for an adaptive system.

4.1 NNS

Of the myriad approaches used to enable a system to adapt, NNs are likely the most prevalent
and well known. An NN, or artificial neural network (ANN), is a mathematical model, inspired
by the structure of biological NNs that processes information through an interconnected group of
nodes called neurons. In practical terms, NNs are nonlinear statistical analysis or decision-
making tools. They can be used to model complex relationships between inputs and outputs or to
find patterns in data. NNs can be constructed using supervised, unsupervised, or reinforcement
learning.

4.1.1 Fundamental Concepts in NNs

All ANNs shares some common terminology and features; however, the wide variety of
specialized configurations and features preclude an exhaustive coverage of all ANN terminology
in this paper. This section cites glossary definitions mostly from references 10 and 11 as
representative of definitions consistent with all sources reviewed as part of the literature search.

11

A neuron is a basic computation element of the NN [11], consisting of a weighted sum of input
connections, passed through an activation function (also called a threshold function), that is
typically nonlinear, such as a hyperbolic tangent or another sigmoid (S-shaped) function, as
shown in figure 2 [12].

Figure 2. Model of a neuron

The adaptive feedback process for ANNs refines each weight, defined as the “numerical values
attached to specific neuron inputs to indicate significance” [11].

The topology of the ANN, which is the manner and organization in which the neurons are
connected together [11], varies significantly for different types of ANNs; however, a common
form contains an input layer of neurons (f1 through f3 in figure 3, taken from reference 13), one
or more hidden layers (f4 and f5), and an output layer (f6).

Figure 3. NN topology

The number of neurons in the input layer corresponds to the number of inputs to the system.
Though linear systems require the inputs to be linearly independent, this restriction is not placed
on NNs, which makes them attractive for systems with data sources that may be related.
Similarly, the number of outputs is not restricted to one.

The topology represented above is a feedforward network, defined as “a network in which signal
paths can never return to the same signal node” [14]. This is in contrast to a feedback network,
defined as “a network in which signal paths can return to the same signal node” [14], which
would be represented in figure 3 by right-to-left signal arrows between neurons; this implies a
temporal dependence of the network on its previous states, whereas a feedforward network has
no such state dependency and is a function only of its current inputs. Feedforward networks are
prevalent in the literature discussing the application of ANNs to safety-critical systems, with the
above topology usually identified as a multilayer perceptron.

12

Many applications of this topology include only one hidden layer, with the number of neurons in
the layer driven by the intrinsic characteristics of the phenomenon the ANN is intended to
approximate. Initial observations about the phenomenon are provided to the ANN through
training using training data, sometimes referred to as the training set.

Training data consists of input and desired output data pairs used to train the system. This data
allows the NN to learn the appropriate response to predefined stimuli [10, 11] by adjusting
certain parameters.

Note that a data pair does not imply single input/single output training data—the pair would
instead consist of an input vector and an associated output vector. A useful delineation between
training and learning is:

• Learning—The modification of an NN’s behavior in response to its environment [11].

• Training—Learning using preoperation knowledge that defines the appropriate response
to predefined stimuli.

For ANNs, the primary distinction between training and learning in general is the context.
Training encompasses learning that occurs outside of an operational context in a controlled
environment (such as during system development), whereas, in general, learning may also occur
during operation. This distinction will serve as a primary discriminator in the following
discussion of the use of ANNs in a safety-critical system; concerns regarding ANNs that are
trained during development and then fixed (no additional learning occurs during operations) vary
significantly from concerns regarding the use of ANNs that continue to learn during operations
(dynamic).

In feedforward networks, the common approach to learning is through the use of a
back-propagation scheme. In simple terms, once the network has processed the input from the
training data, the network looks at the difference between the network’s response and the
expected response and then the weights associated with the nodes of the network are adjusted by
working backwards through the network.

Though there are numerous variations, back-propagation typically involves a gradient descent
learning rule that influences the adjustment of the network weights in the direction of the
steepest error gradient, as shown in figure 4.

13

Figure 4. Gradient descent learning rules

In figure 4(A), starting at point 1, the gradient descent rule implies that the weights are adjusted
so that the response of the system is influenced towards point 2. At the subsequent application of
the same training data, the gradient at point 2 will influence the response in the same direction,
resulting in an overshoot of the global minimum shown in the figure as a solid dot. The gradient
descent at point 3 would then influence the solution back towards the global minimum, with the
magnitude of the gradient influencing the step size. This repeats until the process converges on
the global minimum error within an acceptable tolerance. Figure 4(B) shows the common
concern that learning converges on a local minimum, resulting in significantly higher training
error then would be achieved at the global minimum. Sophisticated back-propagation schemes
have been developed to improve the speed of convergence on a global minimum error and avoid
convergence to a local minimum error.

4.1.2 Example Application of an NN

Work performed by Goodrich and Barron Associates in applying an NN to an in-flight fuel
measurement system provides a good example of the use of an NN in an airborne application
[15, 16].

The conventional approach to a fuel measurement system involves the development of a
multi-dimensional lookup table that maps fuel sensor signals to fuel levels. Because of the shape
of the fuel tanks and nonlinearities of the sensors, it is not analytically feasible to develop a
mathematical expression for this nonlinear estimation problem. Instead, nonlinear data is
generated by a complex high-fidelity model of the fuel system and tabularized into a form that
can be indexed by a table lookup software function.

The table resulting from this approach requires a very large memory footprint. Furthermore, this
approach requires each sensor input to be treated as an independent degree of freedom (a
separate table dimension) when in actuality significant coupling may exist between sensors that
can be exploited to generate more accurate measurements. These two reasons motivated research
into using an NN to represent the mapping between sensor data and fuel measurements.

Figure 5 shows a comparison between the conventional approach and the NN approach.

14

Figure 5. Comparison of fuel measurement system approaches

The NN approach used the data from the same high-fidelity model used to develop the table data
to generate training data for a feed-forward NN. Goodrich and Barron Associates developed
techniques to monitor the back-propagation training of the NN against verification data to ensure
that the training converged on a solution that matched the required behavior to an acceptable
accuracy. Additionally, analytical methods were developed to guarantee that the nonlinearities in
the resulting network were bounded to an acceptable level. Once trained, the NN was fixed, and
the resulting static network algorithm represented the algorithm that would be implemented in
software.

The following is a brief summary of the four factors discussed in section 3 as applied to this
example:

1. Feedback Process: The active feedback path is used during network training in a

controlled environment using data from the high-fidelity model. The backpropagation
process refines network weights based on the difference between the output defined in
the training data and the actual network output, known as network error. Network error
continues to be fed back to the backpropagation process through subsequent iterations
until the network error is reduced to an acceptable threshold across all inputs, at which
point the feedback is disabled and the network configuration fixed.

2. Life Cycle Context: The NN training occurs during development only and is fixed for

operation.

3. Learning Method: Supervised training is used to train the network with data generated

from the high-fidelity model.

Neural Net Approach

Conventional Approach

High-fidelity
Model

Low Fidelity
Lookup
Tables

Linear
Interpolation

Fuel
Measurement
Sensor Data

High-fidelity
Training

Data

Untrained
Neural

Network

Trained
Neural

Network

Fuel
Level

Fuel
Level

15

4. Role of Adaptation: The statistical analysis method is regression analysis between the
input (sensors) and output (fuel measurement). This is a nonlinear, continuous model of
the process.

The NN approach compares to the conventional table-lookup approach for fuel measurement as
follows:

• Training through the backpropagation resulted in a compact algorithmic representation of

the fuel management system when no analytical solution could be derived through
conventional means. This resulted in a representation that required far fewer
computational resources than the conventional approach.

• Specific analysis was necessary to verify that all nonlinearities within the network were

suitably bounded and would not result in unintended network behavior.

• Because the network was fixed for operations, the concerns regarding its use in

operations are much the same as would be expressed for a conventional approach
(assuming that the nonlinear nature of the algorithm has been thoroughly reviewed).

• The use of supervised training provided the means to quantify the network error and

establish that the network error met an acceptable tolerance across the input space.
Verification data, independent of the training data, was used to verify that network was
not overtrained. Note that the use of supervised training requires verification that all
intended functionality is completely expressed within the training data.

4.1.3 Observations Concerning NNs

A strong appeal of NNs is that they can be trained to represent nonlinear relationships.
Nonlinearity is also the source of many of the concerns with the use of NNs. Discontinuities,
regions of the data that are highly nonlinear, and the presence of a significant number of
inflections may indicate that (a) training may be difficult, and (b) the ANN topology may be
inordinately complex. Accordingly, verification that the nonlinearities in the network are well
behaved and bounded is a critical verification task. In addition, if an NN is adaptive in operation,
specific consideration must be given to the integrity of the convergence of the training and the
stability of the network in general. Finally, because the training is encoded in the network
through the refinement of the neuron weights, the relationship between the network structure and
the process that the network represents is often difficult or impossible to ascertain analytically. In
other words, traceability between the network and the requirements addressed by the network
often cannot be evaluated by inspection; it is only through demonstrating that the network
behavior is representative of the specified behavior that the traceability can be established.

4.2 GENETIC ALGORITHMS

A genetic algorithm is a stochastic search method that mimics the process of natural selection
and the resulting changes in genetic composition. Whereas most stochastic search methods
operate on a single solution to the problem at hand, genetic algorithms operate on a population of

16

solutions. Genetic algorithms are often used to generate useful solutions to optimization and
search problems. To use a genetic algorithm, one must encode solutions to a problem in a
structure that can be stored in the computer. This object is called a genome (or chromosome).
The genetic algorithm creates a population of genomes and then applies evolutionary operations
to the individuals in the population to generate new individuals. It uses various selection criteria
so that it picks the best individuals for further evolution.

Genetic programming is a specialization of genetic algorithms in which each individual genome
is a computer program. It is used to optimize a population of computer programs according to a
fitness landscape determined by a program’s ability to perform a given computational task.
Genetic programming evolves a population of computer programs; that is, generation to
generation, genetic programming stochastically transforms populations of programs into new,
hopefully better, populations of programs.

A generic algorithm for genetic algorithms is as follows:

• Randomly create an initial population of genomes representing a valid solution
• REPEAT

− Analyze the population to ascertain their fitness
− Select one or two from the population with a probability based on fitness to

participate in genetic operations
− Create new individuals by applying genetic operations with specified probabilities

• UNTIL an acceptable solution is found or another stopping condition is met
• RETURN the selected member of the population

Genetic programming, like nature, is a random process, and it can never guarantee results. As
such, the likelihood that this particular approach for an adaptive system would be considered for
use in a civil airborne application is extremely small.

4.3 REFLECTION/AUTONOMIC COMPUTING

In computer science, reflection is the process by which a computer program can observe and
modify its own structure and behavior at runtime. Reflective/autonomic computing is
computation carried out on data representing the state of an executing system’s hardware,
software components, and their interactions. This is typically accomplished by dynamically
assigning program code at runtime. Self-adaptive reflective middleware uses reflective
computation to adapt its behavior in response to evolving conditions such as system
performance. For instance, a single node might alter the thread schedule for high-demand
services, a distributed computing system might replicate services that are under high demand to
multiple nodes, or a particular protocol may be selected based on monitoring network traffic.

17

4.4 SUPPORTING TECHNOLOGIES

Two additional technologies, fuzzy logic and expert systems, are mentioned here to supplement
the algorithms described above. These technologies are not adaptive; that is, they do not have a
feedback loop:

1. Fuzzy Logic: This is a form of many-valued logic derived from fuzzy set theory to deal
with reasoning that is fluid or approximate rather than fixed and exact. Fuzzy logic is a
superset of conventional (Boolean) logic that has been extended to handle the concept of
partial truth, in which the truth value may range between completely true and completely
false. Fuzzy logic was developed for complex control systems in which mathematical
models were difficult or impossible to create, such as in highly nonlinear systems. It has
been evaluated for use in a variety of control applications, including flight controls [3 and
17]. Fuzzy logic can be combined with an NN to produce an adaptive fuzzy control
system.

2. Expert Systems: This is a computer-based system design to emulate the problem-solving
behavior of a human expert [3]. An expert system usually is comprised of a rule base and
an inference engine that cooperate to simulate the reasoning process that a human expert
pursues in analyzing a problem and arriving at a conclusion. An expert system can be
made adaptive if an adaptive technology is used to refine the inference weights based on
feedback from the user.

5. ADAPTIVE CONTROLS AND THEIR USE IN ADAPTIVE SYSTEMS

This section provides an overview of adaptive controls that is separate from a discussion of the
other adaptive technologies because of the distinct use of feedback for control systems. A
summary of concepts and terms relevant to control systems is provided first, followed by a
discussion of conventional and adaptive controls. Then, representative adaptive control system
architectures are discussed to illustrate the variety of adaptive control approaches.

The field of adaptive controls is extremely wide, and this section provides only a short overview
of a few representative approaches. Note that other adaptive mechanisms, such as NNs, may be
used to provide the adaptivity within the control system. Accordingly, this section focuses on the
general concept of adaptive controls, rather than the specific form of the adaptive mechanisms
used within the control system.

5.1 CONTROL SYSTEM OVERVIEW

A control system is the combination of, at a minimum, a controller connected to the physical
system being controlled. A closed loop control system (shown in figure 6) is formed by
connections between an externally provided command (“Cmd”); the controller and the
actuator(s) of the physical system; and the feedback from the sensor(s) of the physical system to
the controller. The controller feedback provides measured aspects of the physical response, such
as rates or positions, depending on the type of sensors used in the feedback path.

18

Figure 6. Closed loop control system

5.1.1 Controllability/Observability

Controllability and observability are two important properties associated with the physical
system and the interfaces between the physical system and the controller. Whereas both
properties can be expressed mathematically, the fundamental concepts behind them are as
follows:

• Controllability is related to the possibility of placing the physical system into a particular

state by using an appropriate control signal. If a state is not controllable, then no
controller signal will ever be able to control the state. If a state is not controllable, but its
dynamics are stable, then the state is termed stabilizable.

• Observability is related to the possibility of observing, through output measurements, the

state of a system. If a state is not observable, the controller will never be able to
determine the behavior of an unobservable state and, therefore, cannot use that state to
stabilize the system.

Note that both definitions use the concept of state. State is often expressed mathematically, but
the concept of state can be thought of informally as a snapshot of the dynamic (time-varying)
properties of the system under discussion.

Controllability and observability are important not only from a conventional design perspective,
but also in the way in which they limit what can be accomplished through the use of adaptive
control techniques if the characteristics of the physical system change during operation. For
example, a state may become uncontrollable because of an actuator failure or a state may become
unobservable because of a sensor failure. Either case may significantly restrict the feasibility or
effectiveness of an adaptive control technique.

5.1.2 Stability

The definitions for controllability and observability address their impact on the capacity of a
controller to stabilize the system. Stability also has various mathematical definitions, which, for
linear systems (systems for which the output is proportional to the input) are typically expressed
in terms of gain and phase margins in the context of frequency-domain analysis.
Frequency-domain analysis evaluates the control system behavior based on the frequency
content of an input signal. Conversely, time-domain analysis focuses on the actual dynamic
response of the system.

Controller Physical System
ResponseCmd

Controller Feedback

actuator

sensor

19

5.1.3 Robustness

The robustness of a control system is defined as the quality of maintaining designed controller
stability and performance properties in the presence of uncertainties in the system or unmodeled
disturbances. Gain and phase margins provide a standard approach for ensuring robustness for
linear systems. Robustness can be evaluated in frequency-domain analysis by confirming that
positive stability margins remain for small variations in dynamics or modeling assumptions. This
analysis covers both independent and coupled variations. Robustness analysis is then extended
into time-domain analysis where additional effects are included, such as system nonlinearities for
which stability impacts were approximated through linearization in frequency-domain analysis.

5.1.4 Robustness of Non-Adaptive Control Systems

For a non-adaptive control system, controller parameters such as gains and filter coefficients are
determined during design and then fixed for operations. As a result, the controller design is based
on a priori knowledge and assumptions regarding the dynamics of the physical system operating
in its environment. Performance and robustness of the control system may degrade if the actual
dynamics of the physical system, or the actual environment, do not match what was assumed
while developing the controller.

Non-adaptive control design methods result in a fixed controller for a design point defined by a
specific physical system operating in a specific environment. Some methods, such as robust
control theory, account for uncertainties and disturbances within the physical system as part of
the design methodology. These methods still result in a fixed controller, albeit one with more
robust characteristics than what might result from more classical design methods. Additional
analysis can assess the robustness of the control system by varying the properties of the physical
system or the environment away from this design point.

For many application domains, such as aircraft flight controls, multiple design points can be used
to maintain robustness across the range of operations. Frequently, the same controller
architecture can be used across the design points, with the only variations being in controller
parameters such as gains and filter coefficients required to tune the controller for each point. For
these situations, a gain scheduling approach can be used to select the correct set of parameters
based on look-up tables generated during design, as shown in figure 7. Note that the shaded area
in figure 7 and subsequent figures represents the structure of the conventional control system
shown. This does not imply that the controller in the shaded area remains unchanged from the
one shown in figure 6; instead, it is intended to show the evolution of various control system
approaches away from the conventional baseline. In this instance, the structure of the controller
is fixed, but the parameter values used within the controller are passed in from the gain schedule
tables. Note also that the sensor/actuator dynamics are assumed, for the sake of simplicity, to be
part of the physical system.

20

Figure 7. Control system with gain scheduling

5.1.5 Robustness of Adaptive Control

This discussion provides a primary delineation between what is considered to be adaptive and
what is considered to be non-adaptive, for the purposes of this study:

• An adaptive approach uses real-time, in situ feedback of the control system performance
to refine controller parameters.

• A non-adaptive approach uses a priori analysis to design a controller for a specific
operating point.

Note that the non-adaptive approach is not refining parameters based on performance; it is
merely indexing parameters that have been configured through a priori design analysis. Based on
this discussion, adaptive controls may provide increased robustness by providing the means to
refine controller parameters in situ based on the actual response of the physical system, rather
than the assumed response used for the design of a fixed controller. In addition, adaptive
approaches may be able to accommodate unanticipated changes in the dynamics of the controlled
physical system or its environment that are outside of the operational space assumed for a non-
adaptive approach. Conversely, adaptive controls may provide no benefit if the dynamics of the
system are well known across the operational range to support the controller design, and in some
instances may be less robust than a non-adaptive approach, particularly if the time to refine
parameters is large.

Note that adaptive control design methods can also be used to design a fixed (non-adaptive)
controller at a design point. The adaptive approach converges on a solution through training
conducted as part of the controller design process, after which the structure of the controller and
the controller parameters are fixed. Additional analysis is still necessary to evaluate the
robustness of the controller away from the design point. Because there are often nonlinearities in
the controller developed using an adaptive approach, robustness analysis techniques may be
different from the linear systems analysis techniques used for conventional design methods.

5.1.6 Airworthiness Terminology Relevant to Stability/Robustness

The Title 14 Code of Federal Regulations (CFR) and associated Advisory Circulars (ACs)
relevant to control system characteristics do not discuss control system characteristics in terms of

Fixed-Structure
Controller

Gain Schedule

Physical System
ResponseCmd

 (Mach, etc)

Controller Feedback

21

frequency domain gain/phase margins. Instead the emphasis is on characteristics that can be
demonstrated in time-domain analysis and flight tests. Examples of regulations pertaining to
stability and robustness include:

• §25.171 (Stability—General): requires that an airplane must be longitudinally,

directionally, and laterally stable across operational range defined in §25.173–§25.177,
and suitable stability and control feel for any normal operating condition necessary for
safe operations.

• §25.173 (Stability—Static longitudinal-directional stability): specifies requirements to

return to trim speed within a defined percentage after perturbation away from trim for
operational range defined in §25.175.

• §25.181 (Dynamic Stability): requires that short period oscillations, other than

lateral-directional, must be heavily damped with primary controls across operational
speed range, and lateral-directional oscillations must be positively damped with controls
free and controllable with primary controls without requiring exceptional pilot skill.

These examples show how the regulations address stability in terms of settling to trim conditions
or damping of oscillations, and robustness in terms of characteristics maintained over an
operational range. Damping can be expressed mathematically, but generally pertains to how
quickly a dynamic system settles to a commanded steady state condition or returns to a prior
steady state condition after a perturbation, such as a wind gust. Positive damping indicates a
reduction in magnitude to a negligible level within a small number of oscillations, and heavily
damped typically refers to the same reduction within one period of the oscillation.

5.2 ADAPTIVE CONTROL SYSTEM ARCHITECTURES

Though non-adaptive control systems use fixed controller parameters, or parameters that are
selected from a fixed lookup table, adaptive controllers provide a feedback mechanism for
modifying their parameters to improve in situ control system performance, ideally without
sacrificing robustness. In other words, the controller adapts based on the actual response of the
physical system operating in its actual environment to improve its performance. To accomplish
this, an adaptive control system includes a feedback mechanism that is often independent of the
controller feedback path. This feedback mechanism collects data regarding the performance of
the control system, analyzes the data, determines modifications to the control system parameters,
and updates the parameters for use in the next execution cycle. The following subsections
describe some of the most common adaptive control system approaches.

5.2.1 Model Reference Adaptive Control

In Model Reference Adaptive Control (MRAC), shown in figure 8, a reference model describes
the desired response of the physical system operating in its environment, given the input
command to the controller. If the controller is perfectly tuned, the actual response of the system
would essentially be identical to the response of the reference model. However, because of
assumptions or approximations made during design, there is likely to be some variation in the
actual response of the system away from the ideal response described by the reference model.

22

Accordingly, the MRAC approach refines the controller parameters with the goal of driving the
response of the system to match that of the reference model. In the figure, the adaptive feedback
loop is shown in the diagram (and subsequent diagrams) in red.

Figure 8. MRAC

MRAC is an example of direct adaptive control, in which the controller parameters are directly
calculated by the adaptive process.

5.2.2 Model Identification Adaptive Control

In Model Identification Adaptive Control (MIAC), shown in figure 9, a predefined reference
model is not provided to the parameter estimation. Instead, a dynamic reference model is built
using system identification techniques. As the system is characterized, the parameter estimation
uses this representation of the system to refine the controller parameters. MIAC is advantageous
in applications in which a predefined reference model is not feasible, but is limited to
applications in which the important characteristics of the system can be identified based on the
observed response of the system.

Figure 9. MIAC

Reference Model

Controller

Parameter Estimation

Physical System

Reference
Response

Cmd Response

Controller Feedback

+ -
Physical System
Response

Parameter Estimation

Controller

System Identification

Physical System
Cmd Response

Controller Feedback

23

MIAC is an example of indirect adaptive control, in which the adaptive mechanism provides
estimated system parameters to a separate process that calculates the controller parameters. For
example, the adaptive system identification process may refine estimates of aerodynamic
coefficients, which are subsequently used in the parameter estimation process to calculate
controller gains and filter coefficients.

5.2.3 Model-Free Adaptive Control

In Model-Free Adaptive Control, shown in figure 10, the adaptive controller observes the
response of the system and performs direct refinement of the control parameters. The model-free
approach essentially collapses all of the functions associated with system identification,
parameter estimation, and control into a single process. In many applications, little a priori
knowledge of the system is needed to implement a model-free approach, other than a reasonable
estimate of the system time lag (i.e., the interval of time between an input to the system and the
response to that input). Disadvantages of the model-free approach are controller complexity and
a lack of visibility into the process to support placement of process monitors.

Figure 10. Model-Free Adaptive Control

5.2.4 Adaptive Augmentation

Adaptive augmentation, shown in figure 11, provides a way to improve the robustness of a
system that uses a fixed (non-adaptive) controller. A separate controller (labeled Adaptive
Augmentation in figure 11) provides a supplemental control signal designed to cause the
physical system to track the response of the reference model. This augmentation essentially
compensates for assumptions and approximations in the reference model used to design the
non-adaptive controller.

Adaptive Controller Physical System
Cmd Response

Controller Feedback

24

Figure 11. Adaptive augmentation

5.2.5 L1 Adaptive Control

The intent of all adaptive control approaches is to improve robustness by adaptively refining
controller parameters through a feedback process. There are two primary concerns for all of
these approaches:

1. The adaptation is always stable and transient responses are safe.
2. The time to adaptation is sufficiently short compared to other important system

timespans. For example, in adaptive flight controls, adaptation should be sufficiently fast
to avoid adverse interactions with pilot inputs.

For many adaptive control approaches, the robustness of the solution is coupled with the time to
adaptation. A design that has a high adaptation gain (i.e., is tuned to adapt quickly) can have
unacceptable transient response during adaptation and poor stability. Conversely, increasing the
stability of the adaptive approach is often achieved by a lower adaptation gain, which requires a
longer time period to converge on the refined control parameters.

The L1 adaptive control approach [18] provides a solution to these two concerns by providing
guaranteed stability and fast adaptation. This is accomplished by decoupling robustness and the
time to adaptation in the L1 design methodology. Through this decoupling, robustness
guarantees can be defined independently from the influence of adaptation time, and the adaption
time can be made arbitrarily small (depending on hardware limits) without adversely impacting
robustness. Because L1 is a controller design approach, it does not have a specific system
topology.

6. INITIAL IDENTIFICATION OF SAFETY ISSUES

To develop an appropriate approach for verifying the software aspects of an adaptive system, it is
necessary to understand any safety issues relevant to using the adaptive system. There are safety
issues associated with the various factors described in section 2 that influence an adaptive
system, including the life cycle context in which adaptation is actively used, the learning method

Adaptive Augmentation

Non-Adaptive Controller Physical System
Cmd Response

Controller Feedback

+

Reference Model
Reference Response + -

25

used, and the role that the adaptation plays in the overall system function. This section discusses
safety issues identified during Phase 1, with respect to each of these factors.

6.1 IMPACT OF LIFE CYCLE CONTEXT ON SAFETY

A primary distinction with respect to safety is between adaptive systems that are adaptive only
for development, and those that are intended to remain adaptive in operation. Because the design
associated with adaptive systems used only for development is fixed, the safety concerns for
these are similar to what would be appropriate for any other fixed design. However, there are
some characteristics of the adaptive algorithm that should be addressed from a safety
perspective.

Using the fuel measurement system example, the NN was trained using data provided by a
high-fidelity model relating sensor readings to fuel level. The trained network shows good
agreement with the training data and verification data. Though the network was then fixed, it still
contained nonlinearities that needed to be evaluated analytically to show that they would not
present a threat to the safe operation of the aircraft by providing spurious fuel measurement
readings into the system. An analytical approach was devised that showed mathematically that
nonlinearities between test points were bounded and well behaved, demonstrating that network
nonlinearities would not result in spurious fuel measurement.

Based on this example, the following safety considerations were identified for the use of an
adaptive approach in which the system is fixed in operation:

• The integrity of the training data should be substantiated. In particular, the training data

should provide a complete and correct representation of the intended behavior of the
adaptive system.

• Verification data that is independent of the training data should be provided to
demonstrate that the network has converged to an acceptable solution.

• Any nonlinear characteristics in the resulting system should be shown not to adversely
impact system safety. This argument should address the entire operational input space of
the adaptive system, not just specific points covered by training or verification data.

• The means for continuing to update the solution should be shown to be disabled so that
the system cannot inadvertently become adaptive in operations.

• Other safety concerns that may be associated with the use of similar conventional
systems for the specific application area should be addressed.

For applications that adapt in operation, the safety considerations are predicated on the type of
application and the safety concerns associated with the specific adaptive approach. These safety
considerations are addressed in section 6.2.

6.2 IMPACT OF THE ROLE OF ADAPTATION ON SAFETY

Adaptation could be used in various types of applications that would be relevant to NextGen or
to airborne systems. Additional types may be identified as this analysis progresses, or the
definition of additional sub-types may prove beneficial in the future. For each type of

26

application, the role that the adaptation would play is addressed and safety considerations are
listed.

6.2.1 Monitoring

Adaptive approaches that use statistical analysis for classification and clustering can be used for
monitoring applications, such as vehicle or system health monitoring. If used in a batch
environment, a monitoring technique can review a pre-recorded data set to look for anomalies
and trends that, otherwise, may not be evident from inspection. If used in a real-time context,
these techniques can assess current data in light of the data history to produce insight for
situational awareness or vehicle health.

6.2.1.1 Safety Considerations

Adaptive approaches for system monitoring are typically used in an offline setting. Any insight
gained from these analyses can be subject to verification before an action, typically manual, is
taken. The use of these techniques in a real-time setting is a current research topic. Certainly the
risk of either false-positive or false-negative indications resulting from these techniques would
need to be carefully evaluated before any use could be proposed for a safety-critical
environment, particularly if the indication triggered an automated response.

6.2.2 Parameter Estimation for Performance/Efficiency

An adaptive approach can be used to refine estimates of a parameter or set of parameters that are
related to performance. For conventional systems, performance models are often deliberately
conservative, and online estimation of related parameters may provide benefits in terms of
efficiency or performance. Regression analysis is often used for parameter estimation.

6.2.1.2 Safety Considerations

Parameter estimation may represent minimal safety concerns if certain considerations can be
addressed. The primary consideration is establishing a safe range from which the adaptive
approach can select a parameter value. Excursions outside this bound would indicate that the
adaptive approach is nonconvergent, and a monitor would provide the means for reverting to a
conventional approach, such as a fixed value that represents the midpoint of the allowable
parameter range. Analysis would be necessary to show that the discontinuous jump from the
previous out-of-range value to the midpoint value does not introduce an unsafe transient.

6.2.3 Parameter Estimation for Robustness

The previous discussion addresses parameter estimation to improve performance/efficiency.
Parameter estimation can also be used in a controls application to improve the robustness of the
controller. For cases such as indirect adaptive control, control parameters may be calculated from
other system parameters, such as airspeed. In this situation, the control law itself is not adaptive,
but parameters provided to it, from which it calculates its control parameters, are determined
using an adaptive approach. The use of indirect adaptive control is likely to result in a more
robust control law for the current operational conditions, because adaptive estimation is likely to

27

provide more accurate estimations of parameter values than could be provided through
conventional means (such as with a priori analysis or a table lookup value).

6.2.1.3 Safety Considerations

The safety implications for parameter estimations that are used in indirect adaptive control
applications may be greater than those associated with estimation used for
performance/efficiency improvements. Errors in estimation, even if the estimates are within the
tolerance boundaries, now imply a reduction in control system robustness, rather than merely a
loss of performance or efficiency. Additionally, a discontinuous jump when the fallback is
invoked may result in an unsafe control system transient.

6.2.4 Control Reconfiguration

Parameter estimation for direct adaptive control generates refined values for the control system
parameters directly, based on the response of the closed loop system. Direct adaptive controls
may provide the greatest benefit in terms of robustness and may provide the only means to retain
stability in situations in which changes in the system or the operational environment deviate
substantially from those assumed when the control law was developed.

6.2.1.4 Safety Considerations

It may be infeasible to establish parameter estimate bounds and a baseline for reversion if the
direct adaptive approach fails. Accordingly, there may not be means for providing a backup
control system that can be invoked if the adaptive approach becomes unstable. The viability of
an adaptive control system may then rest completely on the strength of the analytical evidence
that can be established prior to deployment. Certain adaptive control techniques, such as L-1
adaptive control, provide guarantees regarding convergence and other characteristics related to
the robustness. Consequently, safety considerations associated with adaptive control
reconfiguration is largely tied to the type of control architecture used and the specific adaptive
technology used within that architecture.

6.2.5 Planning

Statistical analysis for optimization combined with reinforcement learning may be applicable to
applications involving planning or trajectory analysis. Similar to the discussion for monitoring, it
is envisioned that optimization using reinforcement learning could be used in a non-real-time
setting to generate plans or optimized trajectories that could then be verified before being acted
upon. It is possible, however, that these techniques could also be used in a real-time environment
to perform in situ trajectory revisions.

6.2.1.5 Safety Considerations

Planning that uses an adaptive approach is typically performed in an offline setting. Results from
these adaptive techniques can be subject to verification before an action (typically manual) is
taken. The use of trajectory optimization or other planning in a real-time context would
necessitate the use of monitors to ensure that no safety or operational constraints are violated by

28

the results and that a suitable fallback is provided in case the adaptive approach is
non-convergent.

6.3 SAFETY CONCERNS FOR ADAPTIVE ALGORITHMS

Safety concerns can differ depending on the type of adaptive algorithm or technique used. This
analysis is ongoing and, when complete, can be overlaid on the safety considerations associated
with specific applications to develop a composite picture that includes safety considerations for a
particular adaptive technology used for a particular application.

6.3.1 NNS

Safety considerations for NNs are split between static (non-adaptive in operation) and dynamic
NNs, including dynamically growing networks, in which additional neurons may be inserted
during operations:

• In static NNs, unsafe nonlinear network response can occur during operation in a region

of the input space that was not covered by verification.
• Dynamic NNs have safety concerns including:

- Feedback data that could contain a substantial amount of noise that adversely
impacts convergence of the adaptation.

- Schemes that dynamically insert additional neurons into the network. A failure

condition (FC) may result if this growth is unbounded to the point that it impacts
convergence/computational resources because there are too many nodes to
process in the time required.

- Adaptation that fails to converge quickly enough to support continued safe

operations.

6.3.2 Genetic Algorithms

As discussed in section 4.2, genetic algorithms involve the stochastic generation of populations
of candidate solutions that compete in an evolutionary process. The benefit of the technique is to
propose novel candidate solutions and would likely be applicable primarily to a development
environment. Candidate solutions proposed through the use of genetic algorithms would be
subject to verification to ensure that they do not present safety concerns. Because it is not certain
that solutions provided by genetic algorithms are linear, their verification may be similar to what
would be performed on static NNs or other nonlinear algorithms.

29

6.3.3 Reflection/Autonomic Computing

This technology can adjust the structure of the computer program at runtime and, therefore, the
safety considerations associated with the technology can extend to reallocation of computational
resources. Relevant safety considerations include:

• Safety impacts due to the reallocation of resources.
• Changes in the operating system schedule that may affect hard real-time deadlines.
• Resources allocated to increase performance that could adversely affect components.

6.3.4 Adaptive Controls

A number of representative adaptive control architectures are discussed in section 5. In some
instances, a specific adaptive technology, such as an NN, provides the adaptivity (such as
estimating an indirect parameter for MRAC). In other instances, the technology itself defines the
architecture, as is the case with L-1 adaptive control.

Safety considerations for adaptive control depend not only on the type of control architecture
used but also on the characteristics of the system under control. Generally, systems with slowly
varying system characteristics may provide less concern for the application of adaptive controls
than a system with rapidly varying or discontinuous dynamics. In addition, issues presented in
section 5 regarding controllability and observability are issues for any adaptive control approach.

In summary, safety considerations for adaptive controllers result from the combined
contributions of the specific adaptive control technology, the architecture in which it is used, and
the characteristics of the system to which the adaptive control scheme is applied.

7. INITIAL PHASE 2 ACTIVITIES

Though the Phase 1 effort was aimed at identifying foundational aspects essential to assessing
the assurance needs for adaptive systems, Phase 2 worked to condense that information to
understand what specific requirements, especially at the software level, are needed to ensure the
safe use of adaptive systems. Because the work in Phase 2 was not done by those who worked on
Phase 1, initial Phase 2 activities started with a review of the Phase 1 results and final report [19]
and independent examination of the characteristics and architecture of several basic types of
adaptive systems.

An adaptive system typically incorporates a reference model of the desired response and a
learning mechanism that adjusts the control parameters in response to measured changes in the
external environment. The control objective is to adjust parameters so that the actual
performance matches the desired one. The learning mechanism may take several forms, such as
NN, reflection/autonomic (dynamic code assignment or self-modifying code), and genetic update
(random mutation and fitness selection), as described in section 4.

Figure 12 shows a useful taxonomy of the essential attributes of adaptive systems. As figure 12
shows, there is tremendous diversity among different types of adaptive systems, making generic
assessment of software assurance requirements infeasible. Consequently, the Phase 2 efforts

30

targeted a particular adaptive system type. To that end, a specific set of features and constraints
were defined so that more specific assessment of the impact of that adaptive system could be
made. The taxonomy in figure 12 shows that a controls application (e.g., a flight controller) that
continuously monitors the environment (parameter identification) was selected onboard the
aircraft (i.e., parameter updates are calculated locally rather than being uplinked from a ground
facility) that uses supervised learning to perform the parameter update. This choice was guided
by two considerations.

Figure 12. Adaptive system taxonomy

First, adaptive control has been in use since at least the 1960s and has been the subject of much
research and several military applications, of which the following are some examples:

• NASA/USAF F-111 Mission Adaptive Wing [20].
• The Boeing Company is using adaptive control for production of the Joint Direct Attack

Munition (JDAM).
• NASA has been using L1 adaptive control for research with an unmanned model of a

small-scale commercial aircraft [21].
• Rockwell Collins (formerly Athena) has demonstrated the Automatic Supervisory

Adaptive Control (ASAC) on an unmanned, small-scale F/A-18 [22].
• Honeywell®/Air Force Research Laboratory Integrated Adaptive Guidance & Control For

Future Responsive Access To Space Technology (FAST) [23].

Objective for AS

Adaptation Type

Technical Objective

Controls

On-board

Off-board

Monitoring

Health

Planning/Airspace

Environment/Disturbance

Control Reallocation

Parameter Identification

Structure Identification
Trajectory Generation/Route Planning

Change in Parameters, Constraints

Adaptation Method

Supervised

Unsupervised
Reinforcement

Bounded

Unbounded

Continuous

Triggered

Planning

What

When &
Where

How

Optimization

characteristics/property

location

adaptation
frequency

31

These types of adaptive controllers have not been used in any commercial aircraft.

Second, the research team tentatively concluded that, to ensure the safety of an airborne adaptive
system, it would: (1) be necessary to impose some system-level features and constraints, and (2)
be of a type that could be feasibly and accurately represented by a computer model of a type
amenable to automated analysis. These self-imposed requirements excluded the genetic
algorithm and reflection/autonomic types of learning because they appeared to present extreme
modeling difficulty. Controllers of the gain scheduled-type were not considered because the
adaptation is limited to a few predetermined states and can therefore be verified using the
standard methods of DO-178B/C. Similarly, an adaptive system that is pretrained offline and
remains in a fixed configuration was not considered.

To focus the analysis, a representative adaptive system architecture exemplar was constructed
that generalizes the above examples and meets the imposed requirements to use in analysis of
verifiability per DO-178B/C (figure 13 shows a block diagram).

Figure 13. Example of flight control architecture

This is a triggered system that uses an expected response model to update its operating
parameters. The updated values are used when triggered by a signal (e.g., by pilot command or
vehicle health management [VHM] system acting as an observer of various related aircraft
components such as sensors, hydraulics, actuators, control surfaces, etc.) or the occurrence of a
failure or off-nominal condition. The architecture otherwise remains in a fixed/static
configuration.

At the outset, two major safety requirements were considered for this controller: (1) that
parameter adjustment be constrained to predetermined ranges that guarantee stability and
controllability (e.g., in the Lyapunov criteria sense), and (2) that the control error signal
converges asymptotically to approximately zero, within an arbitrarily small bound, infinite time.

System Identification

32

These seem to be essential features of a certifiable flight control system whether adaptive or not,
though they may be challenging requirements, depending on the adaptive algorithm.

To determine the applicability of the DO-178B/C objectives to this adaptive controller, it is
helpful to review the current certification framework and the recent changes it has undergone.
Section 8 describes the certification methodology and framework in the current CFR, associated
advisory materials, and industry standards.

8. CURRENT CERTIFICATION GUIDANCE AND STANDARDS

It is helpful to discuss the current certification framework to determine whether or not adaptive
systems could be certified with or without changes and what those changes should be if required.

This framework is built around Title 14 CFR. Figure 14 shows the general process flow and the
applicable de facto standards of current certification practice. These standards relate to: (1)
system development, (2) safety assessment, and (3) design assurance of system hardware and
software. In the interest of focusing on the key steps, details of all activities and deliverables to
be fully compliant are not shown, however, they can be found within the referenced documents .
The aim here is to give an overview and not a full descriptive narrative. DO-254 [24] is not
discussed because this is not within the scope of the original task and is limited in application to
programmable devices and not to hardware generally [25, 26]. Similarly, SAE ARP-5150 [27]
provides guidance for assessing ongoing safety during commercial operations, but this aspect
will not be discussed in this report.

33

Figure 14. Certification process flow and applicable standards

In each case, there is a direct equivalence between U.S. and European editions of these
documents. These are denoted by SAE/RTCA document numbers and the corresponding
European document numbers (published by European Organization for Civil Aviation
Equipment [EuroCAE]). The U.S. editions are used here for brevity.

8.1 ARP-4754A GUIDELINES FOR DEVELOPMENT OF CIVIL AIRCRAFT AND
SYSTEMS

The original version of ARP-4754 [28] has been in use for 15 years. In 2003, the SAE S-18
Committee started development on ARP-4754A, which was published in 2010. It now has a new
title: “Guidelines for Development of Civil Aircraft and Systems” (the previous title had been
“Certification Considerations for Highly-Integrated or Complex Aircraft Systems”). ARP-4754A
discusses the certification aspects of systems installed on aircraft, taking into account the overall
aircraft operating environment and functions. The following is taken from ARP-4754A [29]:

Safety Assessment Process Guidelines & Methods
(ARP 4761)

System Development Processes
(ARP 4754/A)

Hardware Development
Life-Cycle (DO-254)

Software Development Life-
Cycle (DO-178B/C)

High Level Requirements
For Intended Aircraft

Functions

Aircraft
System
Development
Process

Hardware
Lifecycle
Process

Software
Lifecycle
Process

Operational
Environment

Definition

Safety, Performance
and Interoperability
Requirements

System
Design

Functional
System

Hardware
Requirements

Software
Requirements

Implementation

34

This document discusses the development of aircraft systems taking into account
the overall aircraft operating environment and functions. This includes validation
of requirements and verification of the design implementation for certification and
product assurance. It provides practices for showing compliance with the
regulations and serves to assist a company in developing and meeting its own
internal standards by considering the guidelines herein.

The guidelines in this document were developed in the context of 14CFR Part 25
and European Aviation Safety Agency (EASA) Certification Specification (CS)
CS-25. It may be applicable to other regulations, such as Parts 23, 27, 29, 33, and
35 (CS-23, CS-27, CS-29, CS-E, CS-P).

This document addresses the development cycle for aircraft and systems that
implement aircraft functions. It does not include specific coverage of detailed
software or electronic hardware development, safety assessment processes, in-
service safety activities, aircraft structural development nor does it address the
development of the Master Minimum Equipment List (MMEL) or Configuration
Deviation List (CDL). More detailed coverage of the software aspects of
development are found in RTCA document DO-178B, “Software Considerations
in Airborne Systems and Equipment Certification” and its EUROCAE
counterpart, ED-12B. Coverage of electronic hardware aspects of development
are found in RTCA document DO-254/EUROCAE ED-80, “Design Assurance
Guidance for Airborne Electronic Hardware”. Design guidance and certification
considerations for integrated modular avionics are found in appropriate
RTCA/EUROCAE document DO-297/ED-124. Methodologies for safety
assessment processes are outlined in SAE document ARP4761, “Guidelines and
Methods for Conducting the Safety Assessment Process on Civil Airborne
Systems and Equipment”. Details for in-service safety assessment are found in
ARP5150, “Safety Assessment of Transport Airplanes In Commercial Service”
and ARP5151 Safety Assessment of General Aviation Airplanes and Rotorcraft In
Commercial Service. “Post-certification activities (modification to certificated
product) are covered in section 6 of this document. The regulations and processes
used to develop and approve the MMEL vary throughout the world. Guidance for
the development of the MMEL should be sought from the local airworthiness
authority.”

Table 2 shows the means by which ARP-4754A may be invoked for a particular certification
project. ARP-4754A guidance may also be applicable to aircraft equipment certified to other
CFR parts, such as Parts 23, 27, 29, and 33, so for brevity only Part 25 will be considered in the
discussion. In this table, the term “invocation/policy” means that the referenced document is
recognized by the regulator as an acceptable means of compliance with the applicable CFR Part.

35

Table 2. ARP-4754A invocation

Reference Description Applicability Invocation
ARP-4754A Guidelines for

Development of Civil
Aircraft and Systems

Aircraft systems and equipment AC 20-174[29],
IP, CRI

AC 25.1309-1A
[30]

Describes various
acceptable means for
showing compliance
with the requirements of
14CFR 25.1309(b), (c),
and(d)

Applies to any system on which
compliance with any of those
requirements is based.
Section 25.1309(b) and (d)
specifies required safety levels
in qualitative terms, and requires
that a safety assessment be
made.

Policy

The issuance of an AC is a regulatory policy declaration that an applicant’s compliance thereto is
one, but not the only, acceptable means of showing compliance to the referenced Part of 14 CFR.
Compliance is recommended, but is not mandatory. AC 20-174 identifies ARP-4754A as an
acceptable method for establishing a development assurance process. Compliance to
ARP-4754A may also be required by the certification authority through the issue of a project
specific FAA issue paper or our EASA certification review item (CRI). Final regulatory approval
of all systems is assumed to be accomplished through or within a Technical Standard Order
(TSO), type certificate (TC) or supplemental type certificate (STC) certification project.

8.1.1 Discussion of Recent Changes to ARP-4754

ARP-4754A has had substantial updates relative to its predecessor. The changes summarized
here address the major changes as of January 2011.

The title of the document changed from “Certification Considerations for Highly-Integrated or
Complex Aircraft Systems” for ARP-4754, to “Guidelines for Development of Civil Aircraft and
Systems.” This change is positive because it reinforces development aspects, rather than only
certification; however, it is also negative because the notion of highly-integrated or complex
systems is omitted from the title.

The guidelines are primarily directed toward systems that support aircraft level function.
Typically, these systems involve significant interactions with other systems in a larger, integrated
environment. The contents are recommended practices and should not be construed to be
regulatory requirement. It is recognized that alternative methods to the processes described or
referenced may be available to an applicant desiring to obtain certification. Figure 15 shows a
conceptual mapping of the old and new sections, whereas figure 16 shows the major changes and
new content.

36

Figure 15. ARP-4754 and ARP-4754A sections mapping

Figure 16. In/Out mapping of ARP-4754 and ARP-4754A

Section 1

– Scope
 Section 2

– References

Section 3

– System Development
 Section 4

– Certification Process

Section 5

– Design Assurance
 Level
 Section 6

– Safety Assessment

 Process
Section 7

– Validation

Section 8

– Verification

Section 9

– Configuration
 Management

Section 10

– Process Assurance

Section 11

– Modified Aircraft

Section 1

– Scope
 Section 2

– References

Section 3

– Development Planning

Section 4

– Aircraft and System
 Development Process

Section 5

– Integral Processes

Section 6

– Modifications to Aircraft
 Systems

Appendix A – Process Objectives
 Data

Appendix B

– Safety Program Plan

Appendix C

– FDAL/IDAL Assignment

Appendix D

– Deleted

Appendix (Example)

– Deleted

Process Example

37

8.1.2 Identified Textual Changes Within ARP-4754A

8.1.2.1 Section 1—Scope

• A paragraph was deleted with reference to the precedence of this document in the event
of conflict between the text of this document and the text of DO-178B.

• All the information concerning “highly-integrated” or “complex systems” was deleted.

8.1.2.2 Section 2—References

• Applicable documents → Relationship between American/European standards.
• Definitions.
• Abbreviations and acronyms were added.

8.1.2.3 Section 3—Development Planning

• Life cycle process checkpoints and reviews were added.
• Maturity expectations.
• Transition criteria (i.e., life cycle process checkpoints and reviews, which are aligned

with program phases and gates).
• Management of deviations from plans.

8.1.2.4 Section 4—Aircraft and System Development Process

• Identification of aircraft-level functions, function requirements and function interfaces
• Relationship between requirement levels, functional development assurance level

(FDAL) and item development assurance level (IDAL)
• The objectives for accomplishment of FDAL and IDAL (i.e., ARP4754A, Appendix A,

DO-254/ED-80, and DO-178B/ED-12)

8.1.2.5 Section 5.1—Safety Assessment

• Safety case/Safety synthesis.
• Safety program plan.
• Preliminary Aircraft Safety Assessment.
• Aircraft Safety Assessment.

8.1.2.6 Section 5.2—Design Assurance Level Assignment

• Design Assurance Level (DAL) assignment based on FC severity classification and
independence attributes (no longer based on type of architectures).

• Two different DALs: FDAL that apply to function requirement development and IDAL
that apply to item (hardware/software) development.

• Concept of Functional Failure Sets.

38

• New Table 5-2, “Development Assurance Level Assignment to Members of a Functional
Failure Set,” with two assignment options.

• FDAL assignment taking credit for external events.

8.1.2.7 Section 5.3—Requirements Capture

• Re-use of existing certified systems and items. The requirements to which the system or
item was certified should be validated, according to the new application, and modified as
necessary.

• Deriving safety-related requirements from the safety analyses.

8.1.2.8 Section 5.4—Requirements Validation

• Definition of correctness and completeness improved.
• Validation rigor improved with the concept of independence in the validation process.
• The application of independence in the validation process is dependent on the DAL.
• The validation plan should include a description of the validation activities to which

independence is applied.
• Independent review of requirement data and supporting rationale.
• The reviews should be documented, including the review participants and their roles.

8.1.2.9 Section 5.5—Implementation Verification

• Identification of key verification activities and sequence of any dependent activities.
• Identification of the roles and responsibilities associated with conducting the verification

activities and a description of independence between design and verification activities.

8.1.2.10 Section 5.6—Configuration Management

• Two system control categories (see ARP-4754A Tables 5-6).

8.1.2.11 Section 5.7—Process Assurance

• The process assurance activities described are not intended to imply or impose specific
organizational structures or responsibilities. However, process assurance should have a
level of independence from the development process.

8.1.2.12 Section 5.8—Certification Process

• There may be a single certification plan for the project or a top-level plan for the aircraft
and a set of related plans for each of the aircraft systems.

• Early coordination and approval of the plan is strongly encouraged.

39

8.1.2.13 Section 6—Modification to Aircraft or Systems

• Aviation Authority requirements and regulations categorize aircraft modifications into
either “minor” or “major” changes.

• When a modification is proposed to an item, system, or aircraft, an initial impact analysis
should be performed and should include an evaluation of the impact of the modification
on the original safety assessments.

• The modification impact analysis should be confirmed or updated once verification
activities have been completed. The results of these analyses should be reflected in:

- The appropriate certification documentation.
- The verification activities needed to ensure that no adverse effects are introduced

during the modification process.
- The modification summary in which the impact of the implemented modifications

is confirmed.

8.1.2.14 Appendices

• Appendix A—Process Objectives Data.

- Table A-1: Process Objectives, Outputs, and System Control Category by
function development assurance level (note: the scope and detail of the life cycle
data varies depending on the FDAL assigned).

• Appendix B—Safety Program Plan.
• Appendix C—FDAL/IDAL assignment example.
• Appendix D—deleted.
• Previous guidelines in this appendix have been superseded by the material found in

section 5.2 of ARP-4754A.

8.2 ARP-4761 GUIDELINES AND METHODS FOR CONDUCTING THE SAFETY
ASSESSMENT PROCESS ON CIVIL AIRBORNE SYSTEMS AND EQUIPMENT

The major guidance for civil airborne systems and equipment safety assessment is SAE
ARP-4761 [31]. This is commonly accepted by certification authorities and industry as an
acceptable, but not the only, means of showing compliance to AC 25.1309. However, it is not
formally referenced or recognized in an issued AC. ARP-4761 describes guidelines and a variety
of examples of probabilistic risk assessment methods and techniques for performing the safety
assessment of civil aircraft systems and equipment. SAE S-18 is currently updating this
document with an expected release in 2014.

8.3 SOFTWARE DESIGN ASSURANCE

The primary software design assurance guidance document is DO-178B. Table 3 shows how it is
invoked by the current regulatory framework.

40

Table 3. DO-178B invocation

Reference Description Applicability Invocation
DO-178B Software

Considerations in
Airborne Systems
and Equipment
Certification

Provides guidance for the production of
software for airborne systems and
equipment that performs its intended
function with a level of confidence in
safety that complies with airworthiness
requirements

TSO,
AC 20-115B

Order
8110.49,
Change 1

Software Approval
Guidelines

This order guides Aircraft Certification
Service (AIR) field offices and
Designated Engineering Representatives
(DER) on how to apply RTCA/DO-178B,
“Software Considerations in Airborne
Systems and Equipment Certification,”
for approving software used in airborne
computers.

Policy

AC 20-115B Calls attention to
RTCA DO-178B,
“Software
Considerations in
Airborne Systems
and Equipment
Certification”

Calls attention to RTCA DO- 178B,
“Software Considerations in Airborne
Systems and Equipment Certification,”
issued December 1992. It discusses how
the document may be applied with FAA
TSO, authorizations, TC, or supplemental
type certification authorization (STC).

Policy

9. ADAPTIVE SYSTEM CERTIFICATION

This section discusses adaptive system certification in the context of the selected adaptive system
controller example and the current certification framework described above.

9.1 CONCERNS REGARDING THE FEASIBILITY OF APPLYING DO-178B TO
SOFTWARE DESIGN ASSURANCE OF ADAPTIVE SYSTEMS

All adaptive systems embody a learning subsystem of some type and an embedded model of the
desired system performance. The learning subsystem changes the system operating parameters
(e.g., control gain) in response to measurements taken on the external environment. The
objective is that the actual performance closely matches the desired performance represented in
the model. Non-adaptive (fixed configuration) systems assume that the external environment
remains constant. The external environment includes the sensors providing the inputs and
actuators operating control surfaces. There may be several parameters that adjust value over time
through the learning function. These will, in general, be real-valued variables. This means that an
adaptive system has an infinite set of possible parameter values even if the allowable range is
constrained. This immediately leads to difficulties because it is infeasible to show by review,
test, or conventional analysis that, in the implemented system, all system requirements are
satisfied under all possible parameter values. Moreover, it is difficult to establish what the
expected output from a test should be because the exact system state has evolved through

41

learning, is unobservable, and, therefore, unknown. These difficulties are explained at length in
Jacklin [32, 33] and Schumann [34]. Therefore, one objective in this work is to find ways in
which these difficulties can be overcome.

9.2 SUGGESTED APPROACH TO SOFTWARE DESIGN ASSURANCE OF ADAPTIVE
SYSTEMS

In other works, such as reference 32, the problem has been asked in terms of what methods could
be applied to comply with the assurance standards for software of DO-178B and what changes or
additions to DO-178B would be necessary to permit compliance. Answers to these questions can
best be arrived at by considering the methods by which validated, verifiable high-level
requirements (HLRs) for adaptive systems can be written. With this approach, the software
assurance problem becomes more tractable because DO-178B/C defines a process to verify that
operational code meets the previously stated requirements, which are assumed to be correct and
complete as provided by the systems and safety development processes.

One premise of this work is that DO-178B alone cannot provide adequate software design
assurance, but that DO-178C and its associated supplements offer a promising way to
accomplish adequate software design assurance if they are preceded by rigorous system design
activities that generate validated and verifiable design constraints and requirements. This is
mainly because DO-178C and supplements offer a well-defined methodology to partially shift
the software design assurance burden from test to analysis. Therefore, this research considered
the means and methods by which an applicant can derive and validate a complete and consistent
set of verifiable adaptive system requirements expressed in formal or mathematical terms with
well-defined syntax and semantics that are amenable to modern analysis methods capable of
providing a high level of design assurance.

The following principles are asserted:

• Software design assurance alone cannot ensure the safe application of adaptive systems.
• System safety objectives must be defined and captured; these form the basis of an

unambiguous safety case.
• The adaptive system must, by design, exhibit certain functional and safety properties to

ensure an acceptable level of safety. These properties need to be established and captured
as part of the system requirements capture process.

• System-level validation of the system properties is necessary to ensure safe operation.

This research suggests that some of the newer techniques incorporated in DO-178C and the
associated supplements augmented by system-level considerations offer a possible means to
overcome the difficulties of software design assurance for adaptive systems. More specifically,
this research suggests that:

• More reliance be placed on verification by analysis or simulation than on testing.

• Multi-layered verification methods involving a judicious combination of testing, analysis,

and the simulation of models be used.

42

• Model-based design (MBD) techniques to capture system behavior in an analyzable form
be used.

• Formal methods (FM) analysis techniques should be used because the learned state space
is too broad for testing alone to provide adequate assurance and to predict expected test
results.

• Improved system safety analysis techniques should be used to derive system safety
properties and that those properties be expressed in mathematical notations that are
amenable to verification by FM.

In addition, to make the verification effort manageable, techniques analogous to equivalency
classes that subdivide the learned state space and structural coverage analysis that measures the
verification completeness of the learned state space; both are needed to complete the approach.
Currently, these techniques are not known.

9.3 SYSTEM-LEVEL APPROACHES TO THE CERTIFICATION OF ADAPTIVE
SYSTEMS

Because of the difficulties of showing software design assurance of an adaptive system by
following only the processes of DO-178C, this research concludes that, to ensure the safe use of
adaptive systems, additional work must be accomplished at the system level with the imposition
of certain constraints on the architecture and permitted adaptation. The constraints result in the
construction of desired system safety properties and requirements that, when verified, ensure that
the adaptive system provides an acceptable level of safety. The system HLR are therefore
established as part of the system design and safety processes of ARP-4754A and ARP-4761
through the construction of system functional requirements and safety requirements. These
properties must be written such that:

• The system-level HLR fully express the necessary system properties.
• They are verifiable by one of the means identified in DO-178C and the associated

supplements.

The system properties are then verifiable by formal or other methods, so that objective proof of
conformance can be established. In the analysis of problematic DO-178C objectives, this
research makes use of the system properties that exist as a consequence of satisfying the safety
objectives of the adaptive system.

The definition of “requirement” given in ARP-4744A implies that requirements are valid only if
there are means by which they can be verified. Therefore, the generation of requirements must be
cognizant of the expected verification methods. Derived requirements, which develop throughout
the development phase, should be redirected back to the system and safety processes for
validation. This is necessarily an iterative process because there are no known stopping criteria
that can reliably determine completeness.

43

9.4 DEFINING THE SYSTEM-LEVEL CHARACTERISTICS OF AN ADAPTIVE SYSTEM

To make the analysis more concrete, the example architecture diagram of the target (see figure
13) was analyzed to define some of its salient system-level characteristics in terms of the
system-level design and safety objectives that we consider essential to enable compliance with
the objectives of DO-178B/C and other airworthiness standards.

These characteristics are inputs to the requirements generation process to be followed by the
implementation activity. In the analysis of challenging DO-178B/C objectives, the system
properties that exist as a consequence of satisfying these adaptive system safety objectives were
used. The first step in the process is to define the “system safety objectives” that must be
satisfied as part of systems requirements, design, and verification and validation (V&V)
processes (shown in table 4).

44

Table 4. System safety objectives for adaptive systems (developed with exemplar adaptive
flight control system in mind)

System Safety
Objectives for Adaptive

Systems Activities and Techniques for Satisfying the Objective
1 Ensure adaptive

algorithm stability and
convergence

(to be satisfied during
development)

Activities
The following activities apply to both the adaptive system and the closed
loop system:
• Develop system level requirements to ensure stability and

convergence.
• Define stability and convergence assumptions (e.g., linear plant

dynamics, continuous time implementation).
• Define stability and convergence constraints (e.g. operating condition

[input space] limitations, learned state space limitations, maximum
convergence time).

• Define computational resource usage constraints.
• Define engagement/disengagement criteria with transient suppression.
• Define runtime monitors for detection of:

- Violation of assumptions or constraints.
- Loss of stability or convergence.
- Excessive usage of computational resources.

• Develop system-level requirements that specify recovery behavior in

the event of monitor alarm.
• Validate system requirements.
• Validate assumptions and constraints.
Techniques
Analytical models are used in combination with FM and automated tools
to:
• Specify mathematically rigorous system requirements and design.
• Develop proofs of stability and convergence (e.g., Lyapunov stability

proof).
• Validate system requirements.
• Generate expected results for requirements-based testing.
• Determine optimal adaption gains to balance stability vs. convergence

time.
• Perform automated synthesis of real-time monitors (runtime

verification).
Use adaptive controller designs with proven stability and convergence
properties (e.g., L-1 adaptive control).

45

Table 4. System safety objectives for adaptive systems (developed with exemplar adaptive
flight control system in mind) (continued)

System Safety
Objectives for Adaptive

Systems Activities and Techniques for Satisfying the Objective
2 Ensure adaptive

algorithm stability and
convergence are
satisfied

(to be satisfied during
real-time operation
consistent with Rushby
[35, 36])

Activities
• Development activities for this system objective (2) are covered in

system objective 1.
Techniques
• Use of confidence tool (confidence measure of NN weight

convergence).
• Use of envelop tool to predict and avoid regions of instability.
• Real-time range limiter on learning state space.
• Real-time range limiter on input space.
• Real-time stability/convergence monitor with recovery logic if:

- Stability/convergence is observed to have failed.
- Stability/convergence cannot be ensured because of observed

violation of assumptions or constraints.
- Computational resource margins are observed to be violated.

3 Ensure adaptive
algorithm actively
controls only when
appropriate

Activities
• Development activities for this system objective (3) are covered in

system objective number 1.
Techniques
• Use of engage/disengage mechanisms:

- VHM.
- Confidence/Envelop tools.

4 Ensure no adverse
safety impact due to
transients when an
adaptive system is
engaged/disengaged

Activities
• Development activities for this system objective (4) are covered in

system objective number 1.
Techniques
• Fader functionality for smooth transition of conventional to adaptive

control.
• Allow adaptation learning prior to the adaptive system trigger to

eliminate the need for forcing function excitation to enable adaptation
learning.

5 Ensure adaptive
algorithm does not
adapt to noise or drift
away from good
solution when lacking
useful
command/response
dynamics

Activities
• Development activities for this system objective (5) are covered in

system objective number 1.
Techniques
• Use of dead band on adaptive system inputs so that learning is allowed

only when useful command/response dynamics are available.
• Use Bayesian reasoning to update the learning parameters only in the

presence of sufficient excitation.

46

The next step in the process is to work through all the objectives of DO-178B/C and, based on
the principles described and on table 4, assign methods and techniques that would provide
satisfaction of those objectives. The following methodology was used:

• List DO-178B/C objectives that are difficult to meet for the example adaptive system

chosen.
• Understand what the DO-178B/C objective is asking for and why it is more difficult to

meet for this example adaptive system versus a nonadaptive system.
• List the functional and safety objectives of the system-level adaptive system. These

objectives will enter the requirements creation process of an implementation.
• List the methods that could be used to provide the evidence necessary for the

system-level objective of the adaptive system.

These steps have been followed for our example adaptive system and the results partially
tabulated in appendix C. Because of resource constraints, table 4 is incomplete. The research
team was unable to conclude whether there were special difficulties meeting DO-178C for some
objectives and, therefore, further work remains to complete this step. Note that, in this table,
objectives were merged so that they do not appear in the table in numerical order.

In the development of the table, the system-level use of mathematical models and MBD was
emphasized to describe (i.e., specify) the complete system behavior in a form suitable for
analysis. The system- and software-level use of FM (and other FM-like techniques) was also
emphasized to enable proofs of system safety and performance properties and to explore the full
state space of the adaptive system within feasible simulation times—at least within the veracity
of the mathematical description and the models.

Finally, to bound the analysis problem further, the use of equivalence classes is suggested as a
possible means for classifying real numbered parameter and I/O variables into a finite and
possibly small number of subsets. Establishing equivalence classes requires detailed knowledge
of the application domain and target architecture.

10. ASPECTS OF TOOL QUALIFICATION FOR ADAPTIVE SYSTEMS

The recommended approach to software verification of adaptive systems uses MBD and FM
tools. No need was identified to amend the guidance provided in the tool qualification section of
DO-178C or of the tool qualification of supplement DO-330.

11. RECOMMENDATIONS

The summary recommendation is that, for the safe use and successful certification of adaptive
systems, the following three-step strategy should be implemented:

1. A safety assessment to create a structured, objective safety case.
2. System design activities to create the corresponding safety requirements.
3. Software design assurance using the latest standards.

47

These steps must be supported by mathematically based FM or similar methods and MBD
techniques. This approach is fully consistent with the current regulatory and standards
framework. One caution is that not all the necessary analysis and modeling tools are presently
available and, therefore, further research is required before such an approach can be applied in a
practical application.

This summary recommendation is broken down into a number of more detailed
recommendations in section 11.1. These are classified as V&V recommendations. Though one
particular adaptive system type was the focus of the research, these recommendations are likely
to be applicable to a wider variety of systems.

11.1 RECOMMENDATIONS FOR DERIVATION AND VALIDATION OF ADAPTIVE
SYSTEM SAFETY AND FUNCTIONAL REQUIREMENTS

The following steps are recommended for the creation and validation of system functional and
safety requirements:

• Derive system safety objectives that are adaptive system application domain-specific by

the construction of a structured, objective, evidence-based safety case. The system-level
properties that need to exist essentially form the basis of a safety case. Certification of
adaptive systems depends on both a system safety case (i.e., formal safety claims,
arguments, and evidence) and system and software design assurance.

• Derive system-level properties that satisfy the safety objectives to ensure an acceptable

level of safety. Such properties will drive constraints on the system design.

• Derive system requirements from system safety properties and objectives. Safety

properties should be specified for:

- When adaptation may be engaged (triggering).
- Allowable learned state space, implying that each learned parameter value be

constrained to a known and verifiable range.
- Detection and fallback if they exceed the allowable range. (i.e., response when

constraints are violated).

• Embed system-level properties and requirements in computer models suitable for
automated analysis with qualified tools that can be further decomposed and passed down
to the verification processes.

• Use of ARP-4754A and DO-178C and its associated supplements.

• Update of ARP-4761 should include a structured, evidence-based safety case

methodology.

New regulatory policy instruments are needed to invoke DO-178C and an updated ARP-4761.

48

11.2 RECOMMENDATIONS FOR ADAPTIVE SYSTEM REQUIREMENTS
VERIFICATION

The verification process for the system-level functional and safety requirements and the resulting
derived requirements can be summarized by the following steps:

• It is recommended that MBD techniques incorporating mathematical models with

well-defined syntax and semantics are used. This provides well defined input to
subsequent analysis tools. The mathematical model should express requirements for
safety properties e.g. controllability, overshoot, stability, convergence in the example
adaptive system.

• System behavior should be represented by discrete-time mathematical models if the

implementation will be a digital system.

• FM (and other FM-like techniques) or similar methods are needed to verify requirements

(i.e., behavior) because:

- Learned state space is too rich to adequately test, or for testing to provide
adequate coverage assurance.

- They allow construction of verification test cases and predict expected test results.
- They can provide proof of system safety and performance properties.
- Allow to explore the full state space within feasible simulation times.

• The use of DO-178C and its associated supplements is necessary. DO-178B is inadequate

to provide sufficient software design assurance.

• A multilayered verification methodology will be necessary, involving all of the available

techniques (i.e., test, inspection and analysis [simulation]).

• Need to ensure that the system/safety properties (that form the basis of the safety case)

remain intact during software requirements development and implementation. This
implies traceability up and down the requirements and verification hierarchy.

• The certification process will need to place increased reliance on some compliant, but

nontraditional, means of compliance, with certain DO-178C objectives (i.e., more
reliance on verification by analysis, simulation, and formal proofs of correctness than on
testing).

- Accept analysis and inspection-based verification results for partial certification

credit.
- Use of outputs from the system processes.
- Use of system analytical models as software requirements.
- Use of system analytical models to perform software verification.

49

12. FUTURE ADAPTIVE SYSTEMS CERTIFICATION RESEARCH NEEDS

The following list describes some gaps identified in methods and techniques that appear to be
necessary to perform the steps identified in section 11.2:

• A new technique is needed, analogous to conventional equivalency classes, to classify the

learned state spaces into a finite (and possibly small) number of equivalence regions or
ranges to make verification manageable.

• A new technique is needed, analogous to structural coverage analysis, to adapt the current

notion of structural coverage to measure coverage completeness of the learned state
space.

• Further work is needed to complete the table in appendix C. Specifically, it is still

necessary to determine whether additional V&V methods and activities or
system-level constraints are needed to meet the DO-178C objectives.

• A study of the mapping of available MBD and FM tools to the adaptive system

application domain is suggested to identify capability and qualification gaps. Specifically,
there are presently capability gaps in showing in-target object code conformance to HLR
and low-level requirements and in showing that worst-case execution time objectives are
met.

• ARP-4761 presently provides only limited and incomplete guidance on the construction

of structured, evidence-based safety cases. It is suggested that guidance be extended.

• Because of the specialized nature of FM and MBD techniques, these capacities are not

well-diffused into the developer community. A more formalized process map should be
developed along with supporting user guides.

• The research team recommends that the methodology outlined be demonstrated on an

actual adaptive system application and implementation. The application should be
well-defined and have the supporting mathematical models and code available that are
readily translatable into FM/MBD constructs and amenable to all levels of verification up
to and including the flight test (e.g., the L1 controller). This could include demonstrating
whether FM can be used to demonstrate that NN is stable under all normal and abnormal
input conditions.

13. SUMMARY

Adaptive systems are used in various domains for a wide range of purposes. This range extends
from passive monitoring or advisory systems to estimating one or more parameters to improve
performance or efficiency and, in the extreme, to the complete reconfiguration of flight control
laws in military systems in response to unanticipated system failures or environmental
conditions. For adaptive systems to be used in civil applications for NextGen or in air traffic
control systems in the NAS, those systems will need to comply with regulatory requirements just

50

as any other system would. Determining what the design assurance requirements should be for
software aspects of those systems was the main focus of the Verification of Adaptive Systems
tasks.

The Phase 1 effort was aimed at understanding the range of adaptive systems and how they
impact verification. Progress was made in developing a more comprehensive understanding of
machine learning in general, in how machine learning is used to enable a system to adapt,
(especially with respect to feedback processes), and where machine learning is being used in
various domains (with particular interest in controls applications). Phase 2 significantly extended
that knowledge to determine what requirements, especially at the system level, are needed to
ensure the safe use of adaptive systems.

The Phase 2 work concluded that the software design assurance problem for adaptive systems is
principally one of how to develop correct and complete requirements that define the necessary
system functional and safety properties. These properties need to be established primarily by
analysis. Certification of an adaptive system likely cannot be accomplished using a software
design assurance methodology that is based principally on testing because the test difficulty is
insuperable unless guided by analysis. A set of system safety properties must first be specified
and then design requirements and constraints must be imposed at the system level so that the
safety properties are first ensured by design and then passed down to the software design
assurance process (DO-178C and its associated supplements) for verification to show that they
have been implemented correctly. The verification of requirements can be accomplished by the
use of FM and MBD system and software design and verification techniques as currently
envisaged by DO-178C and supplements. The methods suggested are within the scope of the
current regulatory framework and no major change need be contemplated. Including a structured,
evidence-based safety case methodology in the update to ARP-4761 is recommended, as is the
inclusion of this within the current framework. The principle compliance methodology changes
suggested are: (1) attaching more emphasis to the system and safety development processes
through the construction of a structured, evidence-based safety case, and (2) placing more
reliance on system and software analysis using FM and MDB or similar techniques and less on
testing for gaining certification credit.

51

14. REFERENCES

1. Kaminski, P., “Decadal Survey of Civil Aeronautics: Foundation for the Future,”
National Academies Press: Steering Committee for the Decadal Survey of Civil
Aeronautics, National Research Council, 2006.

2. “JPDO: NextGen Integrated Work Plan, Version 1.0,” September 30, 2008, available at
http://www.jpdo.gov/newsarticle.asp?id=103, (last visited November 8, 2011).

3. Harrison, L., Saunders, P., and Janowitz, J., “Artificial Intelligence with Applications for
Aircraft,” DOT/FAA/CT-88/10, Chapter 20, FAA Handbook—Volume II, Digital Systems
Validation, July 1994.

4. Stroeve, S.H., Ypma, A., Spanjers, J., and Hoogers, P.W., “Neural Network-Based
Recognition and Diagnosis of Safety-Critical Events,” Technical Report NLR-CR-2004-
501, December 2004.

5. RTCA, Inc., “Software Considerations in Airborne Systems and Equipment
Certification,” RTCA/DO-178B, 1992.

6. RTCA, “DO-178C—Software Considerations in Airborne Systems and Equipment
Certification,” RTCA, Washington, DC, DO-178C, December 13, 2011.

7. Olszewski, M., Ansel, J., and Amarasinghe, S., “Kendo: Efficient Deterministic
Multithreading in Software,” The International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS '09), Washington, DC, March
2009.

8. McCormick, G. F., “Adaptive Controls,” CSI Document 04-232-1245, Rev. 1.0,
Appendix E, October 2004.

9. Brun, Y., Di Marzo Serugendo, G., Gacek, C., et al., “Engineering Self-Adaptive Systems
Through Feedback Loops,” Self-Adaptive Systems, LNCS 5525, pp. 48–70, 2009.

10. Kurd, Z., “Artificial Neural Networks in Safety Critical Applications,” PhD Thesis,
Department of Computer Science, University of York, submitted September 2005.

11. Taylor, B., Darrah, M., Pullum, L., et al., “Guidance for the Independent Verification and
Validation of Neural Networks,” Technical Report, Institute for Scientific Research,
2005.

12. “Introduction to Neural Networks,” available at http://galaxy.agh.edu.pl/~vlsi/AI/intro/
(last visited November 26, 2011.

13. “Principles of Training Multi-Layer Neural Network Using Backpropagation,” available
at http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html (last visited November 28,
2011).

52

14. Mackall, D., Nelson, S., and Schumann, J., “Verification and Validation of Neural
Networks for Aerospace Systems,” NASA/CR-2002-211409, June 2002.

15. Zakrzewski, R., “Verification of Performance of a Neural Network Estimator,”
Proceedings of the 2002 International Joint Conference on Neural Networks, IEEE 0-
7803-7278-6/02, May 2002.

16. Hull, J., Ward, D., and Zakrzewski, R. R., “Verification and Validation of Neural
Networks for Safety-Critical Applications,” Proceedings of the American Control
Conference, Anchorage, Alaska, May 2002.

17. Beringer, D.B., “Applying Performance-Controlled Systems, Fuzzy Logic, and Fly-By-
Wire Controls to General Aviation,” DOT/FAA/AM-02/7, May 2002.

18. Cao, C. and Hovakimyan, N., “Design and Analysis of a Novel L1 Adaptive Control
Architecture With Guaranteed Transient Performance,” IEEE Transactions on Automatic
Control, Vol. 53, No. 2, 2008, pp. 586–591.

19. Woodham, K., “Verification of Adaptive Systems, Phase 1 Final Report,” February 10,
2012 (unpublished).

20. Boeing Advanced Systems, “AFTI (Advanced Fighter Technology Integration)/F-111
Mission Adaptive Wing Briefing to Industry,” AFTI/F-111 Mission Adaptive Wing
Program Office, Dayton, Ohio, AFWAL-TR-88-308Z, October 1988.

21. Xargay, E., Hovakimyan, N., Dobrokhodov, V., et al., “L1 Adaptive Flight Control
System: Flight Evaluation and Technology Transition,” presented at the AIAA Infotech at
Aerospace 2010, Atlanta, Georgia, April 20–22, 2010.

22. Rockwell Collins, “Rockwell Collins Successfully Controls and Lands Wing-Damaged
UAV,” available at
http://www.rockwellcollins.com/~/media//Files/Unsecure/News%20Archive/FY08/20080
610%20Rockwell%20Collins%20successfully%20controls%20and%20lands%20wing-
damaged%20UAV.pdf (last accessed November 27, 2012).

23. Busch, D., Bharadwaj, R., Enns, D., et al., “FAST Effector Health Management and
Integrated Adaptive Guidance and Control,” presented at the Integrated Systems Health
Management (ISHM) Conference 2011, Boston, Massachussetts, July 19–21, 2011.

24. RTCA, “DO-254 - Design Assurance Guidance For Airborne Electronic Hardware,”
RTCA, Washington, DC DO-254, April 19, 2000.

25. FAA, “Advisory Circular: Document RTCA DO-254, Design Assurance, Guidance For
Airborne Electronic Hardware,” FAA, Washington, DC, AC 20-152, June 30, 2005.

53

26. FAA, “Final Policy Statement on Applying Advisory Circular 20-152, ’RTCA, Inc.,
Document RTCA/DO-254, Design Assurance Guidance for Airborne Electronic
Hardware,’ to Title 14 Code of Federal Regulations, Part 23 Aircraft; PS-ACE100-2005-
50001,” Federal Aviation Authority, Washington, DC, January 26, 2007.

27. SAE, “Safety Assessment of Transport Airplanes in Commercial Service,” SAE,
Warrendale, Pennsylvania, ARP-5150, November, 2003.

28. SAE, “Certification Considerations for Highly Integrated or Complex Aircraft Systems,”
SAE, Warrendale, Pennsylvania, ARP-4754, November 1996.

29. SAE, “Guidelines for Development of Civil Aircraft and Systems,” SAE, Warrendale,
Pennsylvania, ARP-4754A, December 2010.

30. FAA, “Advisory Circular: Development of Civil Aircraft and Systems,” FAA,
Washington, DC, AC 20-174, September 30, 2011.

31. FAA, “Advisory Circular: System Design and Analysis,” FAA, Washington, DC,
AC 25.1309-1A, June 21, 1988.

32. SAE, “Guidelines and Methods for Conducting the Safety Assessment Process on Civil
Airborne Systems and Equipment,” SAE, Warrandale, Pennsylvania, ARP-4761,
December 1996.

33. Jacklin, S. A., “Closing the Certification Gaps in Adaptive Flight Control Software,”
presented at the AIAA Guidance, Navigation and Control Conference and Exhibit,
Honolulu, Hawaii, August 18–21, 2008.

34. Jacklin, S. A., Lowry, M. R., Schumann, J. M., et al., “Verification, Validation, and
Certification Challenges for Adaptive Flight-Critical Control System Software,”
presented at the Collection of Technical Papers—AIAA Guidance, Navigation, and
Control Conference, Providence, Rhode Island, August 16–19, 2004.

35. Schumann, J., Gupta, P., and Jacklin, S., “Toward Verification and Validation of
Adaptive Aircraft Controllers,” presented at the 2005 IEEE Aerospace Conference, Big
Sky, Montana, March 5–12, 2005.

36. Rushby, J., “Runtime Certification,” presented at the Runtime Verification: 8th
International Workshop, RV 2008 Selected Papers, Budapest, Hungary, March 30, 2008.

37. Rushby, J., “How Do We Certify for the Unexpected?” in AIAA Guidance, Navigation
and Control Conference and Exhibit, American Institute of Aeronautics and Astronautics,
2008.

54

APPENDIX A—TERMINOLOGY

The following list represents a working set of relevant terms and definitions from Phase 1,
subject to further revision during Phase 2.

• Activation Function (also, Threshold Function): defines the output of node in a neural

network (NN) given an input or set of inputs; typically a nonlinear curve, such as a
hyperbolic tangent or another sigmoid (“S-shaped”) function.

• Active Feedback: Continuously measuring the response of a system to changes in the
environment and providing the measurement to the process that produces the stimulus to
the system, such as a controller.

• Adapt: To change behavior using an active feedback process to achieve a goal in the
presence of changes in the system or its environment.

• Adaptive Controller: A controller with adjustable parameters and a mechanism for
adjusting the parameters. The controller becomes nonlinear because of the parameter
adjustment mechanism .

• Adaptive Control System: An adaptive control system is formed using an adaptive
controller to control a physical system that provides the feedback required to support the
controller’s parameter adjustment mechanism.

• Adaptive System: A system that changes behavior based on an active feedback process to
achieve a goal in the presence of changes in the system or its environment.

• Artificial Intelligence (AI): The branch of computer science associated with emulating
aspects of human problem solving, perception, and thought.

• Backpropagation: A learning method used in NN that uses the derivative of the activation
function together with the error formed from the difference between the response and
intended response (during training) or between the response and some representation of
the intended response generated by a goal function during operations.

• Classification: A method for statistical data analysis that groups input data into one of a
number of discrete classes.

• Clustering: A method for statistical data analysis that identifies similarities between
features of the data and groups similar data items into clusters with similar features.

• Controllability: An important property of a control system related to the ability of an
external input (usually a control signal) to move the internal state of a system from any
initial state to any other final state in a finite time interval.

A-1

• Controller: A computer algorithm that processes input commands and feedback from the
dynamic system, and generates commands to the actuators of the dynamic system. The
parameters of the controller can be: (a) fixed for conventional controllers, (b) provided by
an external table-lookup process for gain-scheduled controllers, (c) provided by an
external adaptive algorithm, or (d) refined internally by the adaptive controller.

• Deterministic System: A system in which no randomness is involved in the development
of future states of the system. Given the same input, a deterministic system will always
produce the same output from a given initial state. This contrasts with stochastic or
random systems in which future states are not determined from previous ones.

• Direct Adaptive Control: Controller parameters are calculated directly by an adaptive
approach.

• Environment: The context in which a system operates.

• Genetic Programming: An evolutionary algorithm methodology inspired by biological
evolution to find computer programs that perform a user-defined task.

• Indirect Adaptive Control: Controller parameters are calculated by a process that is
separate from the adaptive approach. For example, an adaptive algorithm may refine
estimates of an aerodynamic coefficient that is used subsequently in a fixed
(non-adaptive) algorithm to calculate controller parameters.

• Machine learning: A branch of AI concerned with the design and development of
algorithms that enable computers to evolve behaviors. A major focus of machine learning
research is to automatically learn (be trained) to recognize complex patterns and make
intelligent decisions based on data. Statistical techniques are typically used to achieve
these means.

• Middleware: Software that is structured to reside between the operating system and the
application, mediating the interaction between them by providing a standard collection of
components and services from which to build distributed systems.

• Optimization: The selection of a “best” element from some set of available alternatives.

• NNs (also artificial neural network): A network of neurons that are connected according
to a prescribed topology. Note that there is no standard structure for NN topology.
However, a common structure consists of an input layer of neurons, connected to one or
more intermediate layers (called “hidden layers”), which are connected to an output layer.

• Neuron: A basic computation element of the NN [1], consisting of a weighted sum of
inputs passed through an activation function.

• Nondeterministic System: A system in which random processes influence the
development of future states of the system. If a nondeterministic system is given some
initial inputs, the system may produce a different state for each run.

A-2

• Observability: Related to the possibility of observing the state of a system through output
measurements. In control theory, observability is a measure for how well internal states
of a system can be inferred through knowledge of its external outputs.

• Reference Model: A model that describes the desired response of the physical system
operating in its environment.

• Regression: A method of statistical analysis that identifies mathematical relationships
among variables.

• Reinforcement Learning: The system learns by interaction with the environment to
optimize an accumulated reward. Reinforcement learning occurs by making intermediate
decisions to explore previously unselected actions (exploration) or selecting actions based
on experience (exploitation).

• Robustness: The quality of maintaining designed controller stability and performance
properties in the presence of uncertainties in the system or unmodeled disturbances.

• Self-adaptive reflective middleware: Middleware that uses reflective computation to
adapt its behavior in response to evolving conditions, such as system performance.

• Stability: A system is stable if every bounded (limited) input produces a bounded output.
Stability is quantified by gain and phase margins for frequency domain analysis and by
positive damping for time-domain analysis.

• Stochastic Search Method: A search method that makes use of random numbers and is
able to find good solutions reasonably quickly without guaranteeing the optimum.

• Supervised Learning: Learning that is accomplished with predetermined sets of data that
represent input and response relations. Supervised learning is often called “training,” with
the predetermined data set called “training data.” Supervised learning can occur in an
operational setting if a model provides the intended input/response relationship, given the
same input provided to the system.

• System: A collection of hardware and software components organized to accomplish a
specific function or set of functions [2].

• Time to adaptation: The time scale required for an adaptive system to respond to changes
in the environment and modify its parameters. Note that, for adaptive control systems,
time to adaptation can define a transient period during which the system may experience
reduced stability or instability.

• Training: Learning using pre-operation knowledge that defines the appropriate response
to predefined stimuli.

A-3

• Training Data: Data used to provide the NN with pre-operation knowledge. This data
allows the NN to learn, by adjusting certain parameters, the appropriate response to
predefined stimuli [1].

• Unsupervised Learning: Learning that applies statistical techniques to identify
non-obvious relationships within the data.

REFERENCES.

1. Andrews, R., Diederich, J., and Tickle, A.B., “Survey and Critique of Techniques for
Extracting Rules From Trained Artificial Neural Networks,” Knowledge-Based Systems,
Vol. 8, Issue 6, December 1995, pp. 373–389.

2. Astrom, K., and Wittenmark, B., Adaptive Control, Second Edition, Prentice Hall,
December 1994.

A-4

APPENDIX B—LITERATURE SEARCH RESULTS

The literature search for this effort culminated in 206 references, including textbooks;
conference proceedings; journal publications; standards and guidelines; industry papers;
academic sites; and other online resources and are listed below.

2. Ahlstrom, U. and Friedman-Berg, F., “Subjective Workload Ratings and Eye Movement

Activity Measures,” DOT/FAA/CT-05/32, 2005.

3. Alexander, R., Hall-May, M., Kelly, T., and McDermid, J., “Safety Cases for Advanced
Control Software: Final Report,” University of York, June 2007.

4. Alexander, R., Kelly, T., Kurd, Z., and McDermid, J., “Safety Cases for Advanced
Control Software: Safety Case Patterns,” Department of Computer Science, University
of York, October 2007.

5. Alexander, R., Hall-May, M., and Kelly, T., “Certification of Autonomous Systems,”
2nd SEAS DTC Technical Conference, Edinburgh, UK, 2007.

6. Alexander, R., Hall-May, M., and Kelly, T“Certification of Autonomous Systems under
UK Military Safety Standards,” Proceedings of the 25th International System Safety
Conference (ISSC '07), August 2007.

7. Amelsberg, S., “Pilot Model for Wake Vortex Encounter Simulations for Take-Off and
Departure,” presented at the Models and Methods for Wake Vortex Encounter
Simulations Workshop, Technical University of Berlin, Germany, June 2010.

8. Anderson, B.D.O., “Failures of Adaptive Control Theory and Their Resolution,”
Communications in Information and Systems, Vol. 5, No. 1, 2005, pp. 1–20.

9. Anderson, D. and McNeill, G., “Artificial Neural Networks Technology, A DACS
State-of-the-Art Report,” prepared for: Rome Laboratory, RL/C3C Griffiss AFB, New
York, August 20, 1992.

10. Andersson, J., de Lemos, R., Malek, S.,, and Weyns, D., “Towards a Classification of
Self-Adaptive Software Systems,” Computer, Vol. 5525, 2009.

11. Andrews, R., Diederich, J., and Tickle, A.B., “Survey and Critique of Techniques for
Extracting Rules From Trained Artificial Neural Networks,” Knowledge-Based Systems,
Vol. 8, Issue 6, December 1995, pp. 373–389.

12. Astrom, K. and Wittenmark, B., “Adaptive Control,” Second Edition, Prentice Hall,
December 1994.

13. Avizienis, A., Laprie, J-C., and Randell, B., “Fundamental Concepts of Computer
System Dependability,” IARP/IEEE-RAS Workshop on Robot Dependability:
Technological Callende of Dependable Robots in Human Environments, Seoul, Korea,
May 21–22, 2001.

B-1

14. Avizienis, A., Laprie, J-C., Randell, B., and Landwehr, C., “Basic Concepts and
Taxonomy of Dependable and Secure Computing,” IEEE Transactions on Dependable
and Secure Computing, Vol. 1, No. 1, January–March 2004.

15. Barbacci, M., Klein, M.H., Longstaff, T.A., and Weinstock, “Quality Attributes,”
Technical Report, CMU/SEI-95-TR-021, ESC-TR-95-02, December 1995.

16. Barbacci, M.R., “Analyzing Quality Attributes,” News at SEI, available at
http://www.sei.cmu.edu/library/abstracts/news-at-sei/architectmar99.cfm, March 1,
1999.

17. Basher, H. and Neal, J.S., “Autonomous Control of Nuclear Power Plants,” Technical
Report ORNL/TM-2003/252, Nuclear Science and Technology Division, 2003.

18. Bass, E.J., Ernst-Fortin, S.T., Small, R.L., and Hogans, Jr., J., “Architecture and
Development Environment of a Knowledge-Based Monitor That Facilitate Incremental
Knowledge-Base Development,” IEEE Transactions on Systems, Man, and
Cybernetics—Part A: Systems and Humans,
Vol. 34, No. 4, July 2004.

19. Bedford, D.F., Morgan, G., and Austin, J., “Requirements for a Standard Certifying the
use of Artificial Neural Networks in Safety Critical Applications,” Proceedings of the
International Conference on Artificial Neural Networks, 1996.

20. Behbahani, A.R., “Advanced, Adaptive, Modular, Distributed, Generic Universal
FADEC Framework for Intelligent Propulsion Control Systems,” Technical Report
AFRL-RZ-WP-TP-2008-2044, Air Force Research Laboratory,
Wright-Patterson Air Force Base, Ohio, September 2007.

21. Bengio, Y., “Learning Deep Architectures for AI,” Foundations and Trends in Machine
Learning, Vol. 2, Number 1, 2009.

22. Bengio, Y. and LeCun, Y., “Scaling Learning Algorithms Towards AI,” Large-Scale
Kernel Machines, MIT Press, 2007.

23. Beringer, D.B., “Applying Performance-Controlled Systems, Fuzzy Logic, and Fly-By-
Wire Controls to General Aviation,” Final Report, Civil Aerospace Medical Institute,
FAA, Oklahoma City, Oklahoma, May 2002.

24. Bishop, C.M., “Novelty Detection and Neural Network Validation,” IEE Proceeding of
Vision, Image and Signal Processing, Vol. 141, No. 4, August 1994, pp. 217–222.

25. Bodson, M. and Groszkiewicz, J.E., “Multivariable Adaptive Algorithms for
Reconfigurable Flight Control,” IEEE Transactions on Control Systems Technology,
Vol. 5, Issue: 2, March 1997, pp. 217–229.

B-2

26. Brun, Y., Di Marzo Serugendo, G., Gacek, C., et al., “Engineering Self-Adaptive
Systems through Feedback Loops,” Self-Adaptive Systems, LNCS 5525, 2009, pp. 48–
70.

27. Buffington, J., “Validation and Verification of Intelligent and Adaptive Control Systems
(VVIACS),” Technical Report AFRL-VA-WP-TP-2003-327, September 2003.

28. Burken, J.J., Williams-Hayes, P., Kaneshige, J.T., and Stachowiak, S.J., “Adaptive
Control Using Neural Network Augmentation for a Modified F-15 Aircraft,” 14th
Mediterranean Conference on Control and Automation, Ancona, Italy, June 28–30,
2006.

29. Burken, J.J., Hanson, C.E., Lee, J.A., and Kaneshige, J.T., “Flight Test Comparison of
Different Adaptive Augmentations of Fault Tolerant Control Laws for a Modified F-15
Aircraft,” AIAA AIAA Infotech@Aerospace Conference, April 2009.

30. “Intelligent and Adaptive Systems in Medicine,” Burnham, K.J. and Haas, O.C.L., eds.,
Taylor & Francis, 2008.

31. Buscema, M., “The General Philosophy of Artificial Adaptive Systems,” NAFIPS 200
Annual Meeting of the North American Fuzzy Information Processing Society, May
2008.

32. Calise, A.J., “Neural Network Based Adaptive Control of Uncertain and Unknown
Nonlinear Systems,” Technical Report for Air Force Office of Scientific Research,
2003.

33. Cao, C. and Hovakimyan, N., “Design and Analysis of a Novel L1 Adaptive Control
Architecture with Guaranteed Transient Performance,” IEEE Transactions on Automatic
Control, Vol. 53, No. 2, 2008, pp. 586–591.

34. Cao, C. and Hovakimyan, N., “Design and Analysis of a Novel L1 Adaptive Controller,
Part I: Control Signal and Asymptotic Stability,” Proceedings of the 2006 American
Control Conference, Minneapolis, Minnesota, June 14–16, 2006.

35. Cao, C. and Hovakimyan, N., “Design and Analysis of a Novel L1 Adaptive Controller,
Part II: Guaranteed Transient Performance,” Proceedings of the 2006 American Control
Conference, Minneapolis, Minnesota, June 14–16, 2006.

36. Cao, C. and Hovakimyan, N., “Stability Margins of Adaptive Control Architecture,”
IEEE Transactions on Automatic Control, Vol. 55, No. 2, February 2010.

37. Cao, C., Patel, V.V., Reddy, C.K., et al., “Are Phase and Time-delay Margins Always
Adversely Affected by High-Gain?,” AIAA Guidance, Navigation, and Control
Conference and Exhibit, Keystone, Colorado, AIAA 2006-6347, August 2006.

B-3

38. Caruana, R. and Niculescu-Mizil, A., “An Empirical Comparison of Supervised
Learning Algorithms,” Proceedings of the 23rd International Conference on Machine
Learning, Pittsburgh, Pennsylvania, 2006.

39. Chandramohan, R., Steck, J.E., Rokhsaz, K., and Ferrari, S., “Adaptive Critic Flight
Control For a General Aviation Aircraft: Simulations For The Beech Bonanza Fly-By-
Wire Test Bed,” AIAA Infotech@Aerospace Conference and Exhibit, Rohnert Park,
California, May 2007.

40. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., and Magee, J., “Software
Engineering for Self-Adaptive Systems: A Research Road Map,” Self-Adaptive Systems,
LNCS 5525, 2009, pp. 1–26.

41. Cheng, G., “Model-Free Adaptive Control: Impact on the Automation Industry,”
Control Engineering–Europe Magazine, January 24, 2010.

42. Cheung, W.H., “Neural Network Aided Aviation Fuel Consumption Modeling,” Thesis:
Master of Science in Civil Engineering, Virginia Tech, Blacksburg, Virginia, August
1997.

43. Clarke, D.W., “Self Tuning Control,” The Control Handbook, Chapter 53, CRC Press,
1996.

44. Cortellessa, V., Cukic, B., Del Gobbo, D., et al., “Certifying Adaptive Flight Control
Software,” Proceedings of ISACC 2000: The Software Risk Management Conference,
Reston, Virginia, September 2000.

45. Crum, V.W., Buffington, J.M., Tallant, G.S., et al., “Validation and Verification of
Intelligent and Adaptive Control Systems,” Aerospace Conference, Big Sky, Montana,
March 2004.

46. Crnkovic, I. and Larsson, M., “Classification of quality attributes for predictability in
component-based systems,” IEEE Conference on Dependable Systems and Networks,
Workshop on Architecting Dependable Systems, Florence, Italy, June 2004.

47. Cukic, B., “The Need for Verification and Validation Techniques for Adaptive Control
System,” 5th International Symposium on Autonomous Decentralized Systems, Dallas,
Texas, 2001.

48. Culley, D. and Garg, S., “Distributed Control Architecture for Gas Turbine Engine,”
NATO report on More Intelligent Gas Turbine Engines, RTO Technical Report TR-
AVT-128, April 2009.

49. Darrah, M., Taylor, B., and Skias, S., “Rule Extraction From Dynamic Cell Structure
Neural Networks Used in a Safety Critical Application,” Proceedings of FLAIRS
Conference, 2004.

B-4

50. Deng, X., Ghanem, M., and Guo, Y., “Real-time Data Mining Methodology and a
Supporting Framework,” Third International Conference on Network and System
Security, Gold Coast, Queensland, Australia, October 2009.

51. Duerksen, N., “Fuzzy Logic Decoupled Longitudinal Control for General Aviation
Airplanes,” NASA Contractor Report 2011639, December 1996.

52. Dumont, G.A. and Huzmezan, M., “Concepts, Methods and Techniques in Adaptive
Control,” Proceedings of the 2002 American Control Conference, Anchorage, Alaska,
Vol. 2, May 2002, pp. 1137–1150.

53. Dydek, Z.T., Annaswamy, A.M., and Lavretsky, E., “Adaptive Control and the NASA
X-15-3 Flight Revisited,” IEEE Control Systems Magazine, June 2010.

54. Engström, H. and Kaplan, A., “Adaptive Process Control in Laser Robotic Welding,”
9th Conference on Laser Materials Processing in the Nordic Countries, August 2003,
pp. 251–258.

55. “Artificial Intelligence with Applications for Aircraft: An Overview,” FAA Update
Edition 21, Fall 1996, p. 8.

56. FAA Office of Commercial Space Transportation, “FY-2005 Research and
Development Accomplishments,” FAA Report HQ-026505, October 2005, p. 4.

57. FAA NextGen Integration and Implementation Office, “NextGen Implementation Plan
2010,” March 2010.

58. FAA NextGen Integration and Implementation Office, “NextGen Implementation Plan
2011,” March 2011.

59. FAA, “Lessons Learned from Transport Airplane Accidents: TACA International
Airlines 737 near New Orleans,” available at http://accidents-
ll.faa.gov/ll_main.cfm?TabID=1&LLID=40&LLTypeID=2 (date last visited November
28, 2011).

60. FAA Research, Engineering and Development Advisory Committee (REDAC), “Report
of the Weather-ATM Integration Working Group,” October 2007.

61. Feng, G. and Lozano, R., “Adaptive Control Systems,” Elsevier Newnes, 1999.

62. Fresnedo, R.D., “Statistics and the Verification Validation & Testing of Adaptive
Systems,” International Joint Conference on Neural Networks, Montreal Canada,
August 5, 2005.

63. Gaber, M.M., Zaslavsky, A., and Krishnaswamy, S., “Mining Data Streams: A
Review,” ACM: Special Interest Group on Management of Data, Vol. 34, No. 2, June
2005.

B-5

64. Gough, B. and Matovich, D., “Predictive-Active Temperature Control of Molten Glass,”
The Glass Industry, Vol. 82, No. 4, 2001, pp. 33–37.

65. Gough, B., Kovac, S., LeBlanc, J., and Deobald, B., “Advanced Predictive Adaptive
Control of Steam Header Pressure, Saveall Consistency, and Reel Brightness in a TMP
Newsprint Mill,” undated white paper, available at
http://www.isa.org/~pupid/Gough_etal_Adv_Pred_Adapt_Ctrl_Stm_Hdr_Press_Saveall
Consistency&_Reel_Bright_TMP_Newsprint_Mill.pdf (date last visited November
27, 2011).

66. Gough, B., Meade, D., England, G., and Kovac, S., “Model-Based Predictive Adaptive
Control of Pulp and Paper Mill Processes,” Technical Association of the Pulp and Paper
Industry (TAPPI) Papermakers & Paper Industry Management Association (PIMA)
International Leadership Conference, Jacksonville, Florida, March 2007.

67. Gregory, I.M., Cao, C., Xargay, E., Hovakimyan, N., and Zou, X., “L1 Adaptive
Control Design for NASA AirSTAR Flight Test Vehicle,” AIAA Guidance, Navigation,
and Control Conference, August 2009.

68. Guenther, K.D., “SMART-T Project Overview,” NASA Office of Safety and Mission
Assurance (OSMA) Software Assurance Symposium (SAS), July 19, 2004.

69. Gupta, P. and Schumann, J., “A Tool for Verification and Validation of Neural Network
Based Adaptive Controllers for High Assurance Systems,” Proceedings of the IEEE
High Assurance Software Engineering (HASE) Conference, Tampa, Florida, March
2004.

70. Gupta, P., Loparo, K.A., Mackall, D., Schumann, J., and Soares, F.R., “Verification and
Validation Methodology of Real-time Adaptive Neural Networks for Aerospace
Applications,” International Conference on Computational Intelligence for Modeling,
Control, and Automation, 2004.

71. H., J.A.M., de Lope, J., and Maravall, D., “Adaptation, Anticipation and Rationality in
Natural and Artificial Systems: Computational Paradigms Mimicking Nature,” Natural
Computing, Vol. 8, No. 4, August 2008, pp. 757–775.

72. Hageman, J.J., Smith, M.S., and Stachowiak, S., “Integration of Online Parameter
Identification and Neural Network for In-Flight Adaptive Control,” NASA/TM-2003-
212028, October 2003.

73. Harrison, L., Saunders, P., and Janowitz, J., “Artificial Intelligence with Applications
for Aircraft,” DOT/FAA/CT-88/10, Chapter 20, FAA Handbook-Volume II, Digital
Systems Validation, July 1994.

74. Tarafdar Haque, M., and Kashtiban, A.M., “Application of Neural Networks in Power
Systems; A Review,” World Academy of Science, Engineering and Technology, Vol. 6,
2005.

B-6

75. Hayakawa, T., “Direct Adaptive Control for Nonlinear Uncertain Dynamical Systems,”
PhD Dissertation, Georgia Institute of Technology, November 2003.

76. Homan, D., “AFRL: Flight Critical Systems Software Certification Initiative,”
presentation to SAE Aerospace Control and Guidance Systems Committee, Meeting 95,
Salt Lake City, Utah, March 2, 1995.

77. Hopfield, J.J., “Neural Networks and Physical Systems With Emergent Collective
Computational Abilities,” Proceedings of the National Academy of Sciences of the USA,
Vol. 79, No. 8, April 1982, pp. 2554–2558.

78. Hrycej, T., “Neural-Network-Based Car Drive Train Control,” IEEE 42nd Vehicular
Technology Conference, Vol. 2, May 10–13, 1992, pp. 1042–1045.

79. Huh, E., “Certification of Real-Time Performance for Dynamic, Distributed Real Time
Systems,” Ph.D. Dissertation, Department of Electrical Engineering, Ohio University,
2002.

80. Hull, J., Ward, D., and Zakrzewski, R.R. “Verification and Validation of Neural
Networks for Safety-Critical Applications,” Proceedings of the American Control
Conference, Anchorage, Alaska, May 2002.

81. Huzmezan, M., Gough, B., Kovac, S., Le, L., and Roberts, G., “A New Generation of
Adaptive Model Based Predictive Controllers Applied in Batch Reactor Temperature
Control,” undated white paper.

82. Idan, M., Johnson, M., Calise, A.J., and Kaneshige, J., “Intelligent
Aerodynamic/Propulsion Flight Control for Flight Safety: A Nonlinear Adaptive
Approach,” 2001 American Control Conference, Arlington, Virginia, June 2001.

83. Idan, M., Johnson, M., and Calise, A.J.,“A Hierarchical Approach to Adaptive Control
for Improved Flight Safety,” AIAA Journal on Guidance, Control and Dynamics, July
2001.

84. International Electrotechnical Commission, “Functional Safety of Electrical/Electronic/
Programmable Electronic Safety-Related Systems,” IEC-61508, 2010.

85. Ioannou, P.A. and Sun, J., “Robust Adaptive Control,” Prentice Hall, Inc, 1996.

86. Joint Planning and Development Office, “NextGen Integrated Work Plan,” Version 1.0,
September 2008.

87. Joint Planning and Development Office, “Security Annex, Concept of Operations for
the Next Generation Air Transportation System,” Version 2.0, June 2007.

88. Joint Planning and Development Office, “NextGen Weather Plan,” Version 2.0, October
2010.

B-7

89. Joint Planning and Development Office, “Concept of Operations for the Next
Generation Air Transportation System,” Version 3.2, September 2010.

90. Jacklin, S., Lowry, M., Schumann, J., et al., “Verification, Validation and Certification
Challenges for Adaptive Flight Control Systems Software,” Proceedings of AIAA
Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island,
August 16–19, 2004.

91. Jacklin, S., “Closing the Certification Gaps in Adaptive Flight Control Software,” AIAA
2008 Guidance, Navigation, and Control Conference, Hawaii, August 18–21, 2008.

92. Jacklin, S., Schumann, J., Gupta, P., et al., “Development of Advanced Verification and
Validation Procedures and Tools for the Certification of Learning Systems in Aerospace
Applications,” AIAA, Infotech@Aerospace Conference, 2005.

93. “Software for Dependable Systems: Sufficient Evidence?,” Jackson, D., Thomas, M.,
and Millett, L.I., eds., Committee on Certifiably Dependable Software Systems,
National Research Council, The National Academies Press, 2007.

94. Jantzen, J., “A Tutorial on Adaptive Fuzzy Control,” EUNITE, 2002.

95. Jaw, L., Tsai, W.T., Homan, D., and Keller, K., “Verification of Flight Software with
Karnough Map-based Checking,” Aerospace Conference, Big Sky, Montana, March
2007.

96. Jaw, L.C. and Garg, S., “Propulsion Control Technology Development in the United
States - A Historical Perspective,” NASA/TM-2005-213978, October 2005.

97. Johnson, E.N. and Kannan, S.K., “Adaptive Flight Control for an Autonomous
Unmanned Helicopter,” AIAA Guidance, Navigation, and Control Conference and
Exhibit, Monterey, California, August 5–8, 2002.

98. Johnson, E.N., Calise, A.J., El-Shirbiny, H.A., and Rysdyk, R.T., “Feedback
Linearization with Neural Network Augmentation Applied to X-33 Attitude Control,”
Proceedings of the AIAA Guidance, Navigation, and Control Conference, AIAA-2000-
4157, 2000.

99. Juang, J-G., Lin, B-S., and Chin, K-C., “Intelligent Fuzzy Systems for Aircraft Landing
Control,” Lecture Notes in Computer Science, Vol. 3613, pp. 851–860, 2005.

100. Kaelbling, L.P., Littman, M.L., and Moore, A.W., “Reinforcement Learning: A
Survey,” Journal of Artificial Intelligence Research, 1996.

101. Karr, D.A., Vivona, R.A., Roscoe, D.A., DePascale, S.M., and Consiglio, M.,
“Experimental Performance of a Genetic Algorithm for Airborne Strategic Conflict
Resolution,” Eighth USA/Europe Air Traffic Management Research and Development
Seminar, 2009.

B-8

102. Kaufman, H., Alag, G., Berry, P., and Kotob, S., “Digital Adaptive Flight Controller
Development,” NASA-CR-141041, November 1974.

103. Kim, D. and Marciniak, M., “A Methodology to Predict the Empennage In-Flight Loads
of a General Aviation Aircraft Using Backpropagation Neural Networks,”
DOT/FAA/AR-00/50, February 2001.

104. Kim D. and Pechaud, L., “Improved Methodology for the Prediction of the Empennage
Maneuver In-Flight Loads of a General Aviation Aircraft Using Neural Networks,”
DOT/FAA/AR-01/80, December 2001.

105. “Special Issue on Applications of Machine Learning and the Knowledge Discovery
Process,” Kohavi, R. and Provost, F., eds., Machine Learning, Vol. 30, 1998, pp. 271–
27.

106. Kohonen, T., “Self-Organized Formation of Topologically Correct Feature Maps,”
Biological Cybernetics, Springer-Verlag, 1982.

107. Kurd, Z., Austin, J., and Kelly, T.P., “Developing Artificial Neural Networks for Safety
Critical Applications,” Proceedings of Eunite' 2003 - European Symposium on
Intelligent Technologies, Hybrid Systems and Their Implementation on Smart Adaptive
Systems, Oulu, Finland, July 2003.

108. Kurd, Z., Kelly, T., and Austin, J., “Developing Artificial Neural Networks for Safety
Critical Systems,” Neural Computing & Application, Vol. 16, No. 1, March 2006, pp.
11–19.

109. Kurd, Z. “Artificial Neural Networks in Safety Critical Applications,” PhD Thesis,
Department of Computer Science, University of York, Submitted September 2005.

110. Kurd, Z. and Kelly, T. “Safety Lifecycle for Developing Safety Critical Artificial Neural
Networks,” Lecture Notes in Computer Science, Vol. 2788, 2003, pp. 77–91.

111. Lambregts, A.A., “Automatic Flight Control Systems, An Interactive Video
Teletraining and Self-Study Course,” FAA IVT Training Course, January 27, 1999.

112. Lambregts, A.A.,“Automatic Flight Controls, Concepts and Methods,” white paper
available at https://faaco.faa.gov/attachments/KNVLPAP6.pdf (date last visited
November 27, 2011).

113. Lambregts, A.A.,“Vertical Flight Path and Speed Control Autopilot Design Using Total
Energy Principles,” Technical report, AIAA paper 83-2239, 1983.

114. Larchev, Campbell, and Kaneshige, “Projection Operator: A Step Towards Certification
of Adaptive Controllers,” AIAA Infotech@Aerospace Conference, Atlanta, Georgia, 20-
22 April 2010.

B-9

115. Lavretsky, E. and Hovakimyan, N., “Adaptive Compensation of Control Dependent
Modeling Uncertainties Using Time-Scale Separation,” Proceedings of the 44th IEEE
Conference on Decision and Control, and the European Control Conference, Seville,
Spain, December 12–15, 2005.

116. Lee, S. and O’Keefe, R.M., “Developing a Strategy for Expert System Verification and
Validation,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 24, No. 4, April
1994.

117. Lewis, F., Liu, K., and Yesildirek, A., “Neural Net Robot Controller with Guaranteed
Tracking Performance,” IEEE Transactions on Neural Networks, Vol. 6, No. 3, May
1995, pp. 703–715.

118. Lillfors, D., Basset, C., Akkerman, R., and Kovac, S., “Blandin Paper Co: Blandin
Reduces Variability in Pulp Brightness with Adaptive Controller,” Pulp & Paper,
January 2003.

119. Lisboa, P.J.G., “Neural Networks: Current Applications,” Chapman & Hall, 1992.

120. Lisboa, P.J.G., “Industrial use of safety-related artificial neural networks,” Contract
Research Report 327 for the Health and Safety Executive, 2001.

121. Liu, Y., Cukic, B., and Gururajan, S., “Validating Neural Network-Based Online
Adaptive Systems: A Case Study,” Software Quality Journal, Vol. 15, 2007, pp. 309–
326.

122. Liu, Y., Cukic, B., Fuller, E., Yerramalla, S., and Gururajan, S., “Monitoring
Techniques for an Online Neuro-Adaptive Controller,” The Journal of Systems and
Software, Vol. 79, 2006, pp. 1527–1540.

123. Luxhøj, J.T. and Cheng, J., “Neural Network Modeling of Aviation Safety Field
Studies,” Proceedings of the 7th Annual Industrial Engineering Research Conference,
Banff, Alberta, Canada, May 9–10, 1998.

124. Lyon, D., Gough, B., and Cameron, M., “Implementation of an Innovative Self-Tuning
Adaptive Controller for Complex Industrial Processes,” undated white paper available at
http://www.andritzautomation.com/documents/implementation-avpforindustry.pdf (date
last visited November 28, 2011).

125. Mackall, D., Nelson, S., and Schumann, J., “Verification and Validation of Neural
Networks for Aerospace Systems,” NASA/CR-2002-211409, June 2002.

126. McCormick, G.F., “Adaptive Controls,” CSI Document 04-232-1245, Rev. 1.0,
Appendix E, October 2004.

127. McCulloch, W.S. and Pitts, W., “A Logical Calculus of the Ideas Immanent In Nervous
Activity,” Bulletin of Mathematical Biophysics, Vol. 5, 1943.

B-10

128. McFarland, M.B. and Calise, A.J., “Neural-Adaptive Nonlinear Autopilot Design for an
Agile Anti-Air Missile,” AIAA, Guidance, Navigation and Control Conference, San
Diego, California, July 29–31, 1996.

129. McKinley, P.K., Stirewalt, R.E.K., Cheng, B.H.C., Dillon, L.K., and Kulkarni, S.,
“RAPIDware: Component-Based Development of Adaptive and Dependable
Middleware,” Technical report, Michigan State University, August 2005.

130. Mili, A., Jiang, G., Cukic, B., Liu, Y., and Ayed, R.B.,“Towards the Verification and
Validation of Online Learning Systems: General Framework and Applications,”
Proceedings of the 37th Hawaii International Conference on System Sciences, Big
Island, Hawaii, January 2004.

131. Mingmei, W., Qiming, C., Yinman, C., and Yingfei, W., “Model-Free Adaptive Control
Method for Nuclear Steam Generator Water Level,” 2010 International Conference on
Intelligent Computation Technology and Automation, Changsha, Hunan, China, May
2010.

132. Mitchell, T.M., “The Discipline of Machine Learning,” Technical Report CMU-ML-06-
108, Carnegie Mellon University School of Computer Science, Machine Learning
Department, July 2006.

133. Mosca, E., “Optimal, Predictive, and Adaptive Control,” Prentice Hall, 1995.

134. Muller, R., Hemberger, H-H., and Baier, K., “Engine Control using Neural Networks: A
New Method in Engine Management Systems,” Meccanica, Vol. 32, No. 5, 1997, pp.
423–430.

135. Murtha, J., “Applications of Fuzzy Logic in Operational Meteorology,” Scientific
Services and Professional Development Newsletter, Canadian Forces Weather Service,
1995, pp. 42–54.

136. Nilsson, N.J., “Introduction to Machine Learning - Draft of Incomplete Notes”
Classroom notes, available at: http://ai.stanford.edu/~nilsson/mlbook.html (date last
visited November 28, 2011).

137. Nguyen, N.T. and Jacklin, S.A., “Neural Net Adaptive Flight Control Stability,
Verification and Validation Challenges, and Future Research,” Applications of Neural
Networks in High Assurance Systems, Springer-Verlag, Berlin, 2010 pp. 77–107,.

138. Nguyen, N. and Krishnakumar, K., “A Hybrid Intelligent Flight Control with Adaptive
Learning Parameter Estimation,” AIAA Infotech@Aerospace 2007 Conference and
Exhibit, Rohnert Park, California, AIAA 2007-2841, May 7–10B 2007.

139. Oh, P.Y., “Improved Model Reference Adaptive Control of Electro-hydraulic Servo
Systems Using The Euler Operator,” IEEE International Conference on Robotics and
Automation (ICRA), Albuquerque, New Mexico, 1997, pp. 1626–1631.

B-11

140. O'Keefe, R.M. and O'Leary, D.E., “Expert System Verification and Validation: A
Survey and Tutorial,” Artificial Intelligence Review, Vol. 7, 1993, pp. 3–42.

141. Olszewski, M., Ansel, J., and Amarasinghe, S., “Kendo: Efficient Deterministic
Multithreading in Software,” Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’09), Washington, DC, March 7–11, 2009.

142. Pecheur, C. and Visser, W., “RIACS Workshop on the Verification and Validation of
Autonomous and Adaptive Systems,” NASA/TM-2001-210927, August 2001.

143. Precup, R.E. and Preitl, S., “Stability and Sensitivity Analysis of Fuzzy Control Systems
- Mechatronics Applications,” Acta Polytechnica Hungarica, Vol. 3, No. 1, 2006.

144. Prokhorov, D.V., “Toyota Prius HEV Neurocontrol and Diagnostics,” Neural Networks,
Vol. 21, 2008, pp. 458–465.

145. Pullum, L.L., Darrah, M.A., and Taylor, B.J., “Independent Verification and Validation
of Neural Networks - Developing Practitioner Assistance,” DoD Software Tech News,
Vol. 7, No. 2, July 2004.

146. Ribler, R.L., Vetter, J.S., Simitci, H., and Reed, D.A., “Autopilot: Adaptive Control of
Distributed Applications,” Seventh IEEE International Symposium on High
Performance Distributed Computing (HPDC-7 '98), Chicago, Illinois, July 21–28,
2009.

147. Richard, M., “Certification of Adaptive Flight Control Software,” Powerpoint
presentation given at 2005 FAA National Software and Complex Electronic Hardware
Standardization Conference, Norfolk, Virginia, July 26–28, 2005.

148. Robertson, D. and Fox, J., “Industrial Use of Safety-Related Expert Systems,” Contract
Research Report 296/2000, Prepared by the Division of Informatics, University of
Edinburgh and the Advanced Computation Laboratory, Imperial Cancer Research Fund
for the Health and Safety Executive, 2000.

149. Rodvold, D.M., “A Software Development Process Model for Artificial Neural
Networks in Critical Applications,” International Joint Conference on Neural Networks
(IJCNN '99), 1999, pp. 3317–3322.

150. Rodvold, D.M., “Validation and Regulation of Medical Neural Networks,” Molecular
Urology, Vol. 5, No. 4, July 8, 2004, pp. 141–145.

151. RTCA, Inc., “Software Considerations in Airborne Systems and Equipment
Certification,” RTCA/DO-178B, 1992.

152. Rushby, J., “A Safety-Case Approach for Certifying Adaptive Systems,” AIAA
Infotech@Aerospace Conference, Seattle, Washington, April 2009.

B-12

153. Rushby, J., “How Do We Certify For The Unexpected?,” AIAA Guidance, Navigation
and Control Conference and Exhibit, Honolulu, Hawaii, AIAA 2008-6799, August 18–
21, 2008.

154. Rushby, J., “Runtime Certification,” The Eighth Workshop on Runtime Verification
(RV2008), Budapest, Hungary, April 2008.

155. Rushby, J., “Critical System Properties: Survey and Taxonomy” Reliability Engineering
and System Safety, Vol. 43, No. 2, 1994, pp. 189–219.

156. Rushby, J., “Quality Measures and Assurance for AI Software,” Technical Report CSL-
88-7R, September 1988.

157. SAE International, “Guidelines and Methods for Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment,” ARP 4761, 1996.

158. SAE International, “Certification Considerations for Highly-Integrated or Complex
Aircraft Systems,” ARP 4754, 1996.

159. Santhanam, V., “Can Adaptive Flight Control Software be Certified to DO-178B Level
A?,” 2005 FAA National Software and Complex Electronic Hardware Standardization
Conference, Norfolk, Virginia, July 26–28, 2005.

160. Sastry S., and Bodson, M., “Adaptive Control: Stability, Convergence, and
Robustness,” Prentice-Hall, 1994.

161. Schulte, A., “Cognitive Automation for Tactical Mission Management: Concept and
Prototype Evaluation in Flight Simulator Trials,” Cognition, Technology & Work, Vol.
4, 2002, pp. 146–159.

162. Schumann, Gupta, and Nelson, “On Verification & Validation of Neural Network Based
Controllers,” Proceedings of International Conference on Engineering Applications of
Neural Networks (EANN 2003), Vol. 3, pp. 401–47, 2003.

163. Schumann, J., Nelson, S., “Toward V&V of Neural Network Based Controllers,”
Proceedings of the First Workshop on Self-Healing Systems, Charleston, SC, pp. 67–72,
2002.

164. “Applications of Neural Networks in High Assurance Systems,” Schumann, J. and Liu,
Y., eds., Studies in Computational Intelligence, Vol. 268, 2010.

165. Schumann, J. and Gupta, P., “Bayesian Verification and Validation Tools for Adaptive
Systems,” Powerpoint presentation available at
http://sarpresults.ivv.nasa.gov/ViewResearch/54.jsp, 2006.

B-13

166. Sheldon, F.T. and Mili, A., “Characterization of Software Quality Assurance Methods:
Five Methods for Verification of Learning Systems,” Workshop on Verification,
Validation, and Testing of Learning Systems in conjunction with the 8th Annual
Conference on Neural Information Processing Systems Conference, Whistler, British
Columbia, Canada, December 16–18, 2004.

167. Shyur, Luxhøj, and Williams, “Using Neural Networks to Predict Component
Inspection Requirements for Aging Aircraft,” Computers and Industrial Engineering,
Vol. 30, No. 2, pp. 257-267, 1996.

168. Shyur, H-J., Luxhøj, J.T., and Williams, T.P., “Use of Neural Networks for Aviation
Safety Risk Assessment,” Proceedings of the FAA-NASA Symposium on the Continued
Airworthiness of Aircraft Structures, Atlanta, Georgia, August 28–30, 1997.

169. Soares, F., Burken, J., and Marwala, T., “Neural Network Applications in Advanced
Aircraft Flight Control System, a Hybrid System, a Flight Test Demonstration,” Lecture
Notes in Computer Science, Vol. 4234, 2006, pp. 684–691.

170. Soares, F. and Burken, J., “A Flight Test Demonstration of On-line Neural Network
Applications in Advanced Aircraft Flight Control System,” International Conference on
Computational Intelligence for Modeling Control and Automation and International
Conference on Intelligent Agents Web Technologies and International Commerce
(CIMCA'06), Sydney, Australia, November 28–December 01, 2006.

171. Soares, F., Loparo, K.A., Burken, J., Jacklin, S., and Gupta, P., “Verification and
Validation of Real-Time Adaptive Neural Networks Using ANCT Tools and
Methodologies,” Infotech@Aerospace Conference, Arlington, Virginia, AIAA 2005-
6997, September 26–29, 2005.

172. Soloway, D. and Haley, P., “Pilots Rate Augmented Generalized Predictive Control for
Reconfiguration,” AIAA Space 2000 Conference and Exposition, AIAA-2000-5328,
September 19–21, 2000.

173. Steck, J.E., Rokhsaz, K., Pesonen, U.J., Bruner, S., and Duerksen, N., “Simulation and
Flight Test Assessment of Safety Benefits and Certification Aspects of Advanced Flight
Control Systems,” DOT/FAA/AR-03/51, August 2003.

174. Storm, W.A., Whalen, M., Cofer, D., and Krogh, B., “Certification Techniques for
Advanced Flight Critical Systems Final Report,” Final Report for AFRL/RBCC,
Wright-Patterson AFB, OH, (Note: Restricted Distribution).

175. Stroeve, S.H., Ypma, A., Spanjers, J., and Hoogers, P.W., “Neural Network-based
Recognition and Diagnosis of Safety-critical Events,” Technical Report NLR-CR-2004-
501, December 2004.

176. Tallant, G.S., Buffington, J.M., and Krogh, B., “AFRL: Validation and Verification of
Intelligent and Adaptive Control Systems (VVIACS) - Final Report,” Technical Report
AFRL-VA-WP-TR-2006-3169, July 2006.

B-14

177. Tallant, G.S., Bose, P., Buffington, J.M., et al., “Validation & Verification of Intelligent
and Adaptive Control Systems,” IEEE Aerospace Conference, paper #1487, Final
Version, March 2004.

178. Taylor, B., Darrah, M., and Moats, C., “Verification and Validation of Neural
Networks: a Sampling of Research in Progress,” Intelligent Computing: Theory and
Applications, Proceedings of 17th Annual International Symposium on
Aerospace/Defense Sensing, Simulation, and Controls (AeroSense 2003), Orlando,
Florida, April 21–25, 2003.

179. Taylor, B., Darrah, M., Pullum, L., et al., “Guidance for the Independent Verification
and Validation of Neural Networks,” Technical Report, Institute for Scientific Research,
2005.

180. “Methods and Procedures for the Verification and Validation of Artificial Neural
Networks,” Taylor, B., ed., Springer, 2006.

181. UK Ministry of Defence, “Safety Management Requirements for Defence Systems,”
Defence Standard 00-56, Issue 4, June 1, 2007.

182. US Department of Defense, “Standard Practice for System Safety,” MIL-STD-882D, 10
February 2000.

183. VanDoren, V., “Model Free Adaptive Control,” Control Engineering: Europe, February
2, 2001.

184. Vivona, R.A., Karr, D.A., and Roscoe, D.A., “Pattern-Based Genetic Algorithm for
Airborne Conflict Resolution,” AIAA Guidance, Navigation and Control Conference,
AIAA-2006-6060, August 2006.

185. Wang, J., Patel, V., Cao, C., Hovakimyan, N., and Lavretsky, E., “Verifiable L1
Adaptive Controller for Aerial Refueling,” AIAA Guidance, Navigation and Control
Conference and Exhibit, Hilton Head, South Carolina, August 20–23, 2007.

186. Wang, L-X. and Mendel, J.M., “Fuzzy Adaptive Filters, with Application to Nonlinear
Channel Equalization,” IEEE Transactions on Fuzzy Systems, Vol. 1, No. 3, August
1993.

187. Ward, D.G., Hull, J.R., Zeliff, B., Zakrzewski, R., “Verification and Validation of
Neural Networks for Flight Critical Applications,” unpublished Powerpoint presentation
given to NASA Langley Research Center, October 3, 2002.

188. West, D., “Neural Network Credit Scoring Models,” Computers and Operations
Research, Vol. 27, No. 11–12, October 2000, pp. 1131–1152.

189. Williams, B.C., Ingham M.D., Chung, S.H., and Elliott, P.H., “Model-Based
Programming of Intelligent Embedded Systems and Robotic Space Explorers,”
Proceedings of the IEEE, Vol. 91, No. 10, January 2003, pp: 212–237.

B-15

190. Wilson, B., Gough, B., and Kay, J., “Adaptive Control of Sulfur Recovery Units,”
undated white paper, available at http://www.andritzautomation.com/documents/
adaptive_control_sulphur_recovery_units.pdf (date last visited November 27, 2011).

191. Wise, K.A. and Lavretsky, E., “Robust Adaptive Control for the Joint Direct Attack
Munition (JDAM),” The Impact of Control Technology, Samad, T. and Annaswamy,
A.M., eds., 2011.

192. Wise, K.A., Lavretsky, E., Hovakimyan, N., Cao, C., and Wang, J., “Verifiable
Adaptive Flight Control: UCAV and Aerial Refueling,” AIAA Guidance, Navigation
and Control Conference and Exhibit, Honolulu, Hawaii, AIAA 2008-6658, August 18–
21, 2008.

193. Wise, K.A., “Adaptive Flight Control of a Sensor Guided MK-82 JDAM,” SAE
Meeting, Williamsburg, Virginia, October 12, 2006.

194. Wong, B.K., Bodnovich, T.A., and Selvid, Y., “Neural Network Applications in
Business: A Review and Analysis of the Literature (1988–1995),” Decision Support
Systems, Vol. 19, No. 4, April 1997. pp. 301–320.

195. Work, P.R., “Special Session on Certification of Dynamic and Adaptive Systems,”
IEEE International Parallel and Distributed Processing Symposium, pp.164, 2007.

196. Wright, P., “Software Assurance for Adaptive Neural Networks In Aerospace
Applications,” Powerpoint presentation given at the 2005 FAA National Software and
Complex Electronic Hardware Standardization Conference, Norfolk, Virginia, July 26–
28, 2005.

197. Xargay, E. and Hovakimyan, N., “Flight Verification and Validation of an L1 All-
Adaptive Flight Control System on the NASA AirSTAR Flight Test Vehicle,” Safe &
Secure Systems & Software Symposium, June 15, 2010.

198. Xargay, E., Hovakimyant, N., Dobrokhodov, V., et al., “L1 Adaptive Flight Control
System: Flight Evaluation and Technology Transition,” AIAA Infotech@Aerospace
Conference, Atlanta, Georgia, April 20–22, 2010.

199. Yerramalla, S., Fuller, E., and Cukic, B., “A Validation Approach for Neural Network-
based Online Adaptive Systems,” Software--Practice and Experience 2006, Vol. 36,
No. 11–12, August 2006, pp. 1209–1225.

200. Yerramalla, S., Cukic, B., and Fuller, E., “Lyapunov Stability Analysis of the
Quantization Error for DCS Neural Networks,” Proceedings of the 2003 International
Joint Conference on Neural Networks, Portland, Oregon, July 2003.

201. Yerramalla, S., Fuller, E., Mladenovski, M., and Cukic, B., “Lyapunov Analysis of
Neural Network Stability in an Adaptive Flight Control System,” Proceedings of the 6th
International Conference on Self-stabilizing Systems, 2003.

B-16

202. Zakrzewski, R.R., “Verification of a Trained Neural Network Accuracy,” Proceedings
of the 2001 International Joint Conference on Neural Networks, 2001, pp. 1657–1662.

203. Zakrzewski, R.R., “Verification of Performance of a Neural Network Estimator,”
Proceedings of the 2002 International Joint Conference on Neural Networks, Honolulu,
Hawaii, May 12–17, 2002, pp. 2632–2637.

204. Zakrzewski, R.R., “Fuel Volume Measurement in Aircraft Using Neural Networks,”
Proceedings of the International Joint Conference on Neural Networks, Washington,
DC, July 15–19, 2001.

205. Zhang, J., Goldsby, H.J., and Cheng, B.H.C., “Modular Verification of Dynamically
Adaptive Systems” Proceedings of the 8th ACM International Conference on Aspect-
Oriented Software Development, Charlottesville, Virginia, 2009, pp. 161–172.

206. Zhang, Y., Yen, I-L., Bastani, F.B., Tai, A.T., and Chau, S., “Optimal Adaptive System
Health Monitoring and Diagnosis For Resource Constrained Cyber-Physical Systems,”
20th International Symposium on Software Reliability Engineering, Mysuru, Karnataka,
India, November 16–19, 2009.

207. Zhou, Y. and Er, M.J., “Reinforcement Learning in Generating Fuzzy Systems,” Theory
and Novel Applications of Machine Learning, February 2009, pp. 376.

B-17

C
-1

APPENDIX C—DO-178B/C OBJECTIVES APPLIED TO ADAPTIVE SYSTEMS

DO-178B/C
Objective/

Section
Objective

Description

What Is the Intent of 178B/C
Objective(s)?

[Ref: primarily DO-248C]

Why Is the 178B/C Objective
Difficult to Satisfy (for chosen

adaptive system example)?

Activities and Techniques Used To
Satisfy 178B/C Objective

(may involve use of system-level
properties)

A-2 Software
development
process

• Systematic requirements
and design
decomposition.

• Complete capture of
software behavior.

A-2.1, A-2.4 HLRs and LLRs
are developed

• Capture of high-level and
LLRs

• Difficulty ensuring that system-
level stability and convergence
properties are retained as the
requirements are decomposed.

• The learned state space varies
based on operating
environment history. This can
increase the difficulty in
decomposing requirements to
the next lower level that define
complete software behavior
(e.g., Sys > HLR > LLR >
Source) with no unintended
functionality.

• Difficulty assessing impact of
derived software requirements
on adaptive system safety (joint
with systems and safety).

Activities
• Decompose system-level

requirements to develop software
requirements and code such that:
 System safety properties are

retained through implementation.
 System safety assumptions and

constraints enforceable by
software are satisfied by software
requirements and implementation.

• System defined runtime monitors are
satisfied by software requirements
and implementation.

• Generate high-credibility evidence of
compliance with next higher level of
requirements.

Techniques
• Reuse system-level analytical models

as software requirements (i.e., take

A-2.2, A-2.5 Derived HLRs and
LLRs are defined

• Capture of all derived
requirements.

• Ensure that safety
analysis is not
compromised by
improper implementation
of safety-related
requirements or
introduction of new
behavior not envisioned
by the safety analysis.

A-2.6 Source code is
developed

• Develop source code.

C
-2

software credit for system process
outputs).

• Apply software-level formal method
techniques (e.g., model checking,
compositional verification, static
analysis, program synthesis, runtime
analysis) to ensure:
 System-level stability and

convergence properties are
retained in the software
requirements and implementation.

 System-level assumptions and
constraints allocated to software
are properly decomposed and
implemented.

A-2.7 EOC is produced
and integrated in
the target computer

• Not more difficult.

A-3, A-4, A-
5, A-6, A-7

Software
verification process

• Apply layers of
verification.

• Ensure detection and
removal of errors early in
the development
processes.

C
-3

A-3 Verification of
software
requirements
process

• Ensure correct, consistent
HLRs.

• Ensure completeness
implementation of system
requirements
(completeness).

A-4 Verification of
software design
process

• Ensure correct, consistent
LLRs.

• Ensure full
implementation of HLRs
(completeness).

A-5 Verification of
software coding
process

• Ensure correct, consistent
source code.

• Ensure full
implementation of LLRs
(completeness).

C
-4

Compliance,
Compatibility

A-3.1, A-4.1,
A-4.8, A-5.1,
A-5.2, A-5.8

• Software HLRs
comply with
system
requirements.

• LLRs comply
with HLRs.

• Software
architecture is
compatible with
HLRs.

• Source code
complies with
LLRs.

• Source code
complies with
software
architecture.

• Parameter data
item file is
correct and
complete.

• Ensure that functional,
performance, and safety-
related systems
requirements are
satisfied.

• Ensure that derived HLRs
are justified and correctly
defined.

• Ensure that HLR are
satisfied.

• Ensure that derived LLR
are justified and correctly
defined.

• Ensure that software
architecture does not
conflict with HLRs.

• Ensure the source code is
accurate and complete
with respect to LLRs.

• Ensure that there is no
undocumented
functionality.

• Ensure that source code
matches architecture data
flow and control flow.

• Ensure that HLRs are
satisfied with respect to
parameter data item file
(e.g., database).

• Difficulty verifying (via
reviews) that system-level
stability and convergence
properties remain intact
through decomposition and
implementation.

• Difficulty verifying (via
reviews) that system and safety
requirements are decomposed
into HLRs and LLRs correctly
and implemented in source
code correctly.

• Difficulty verifying (via
reviews) that HLRs, LLRs, and
source code capture the
complete evolving adaptive
system software behavior.

Activities
• Verify that the software requirements

and code:
 Exhibit system safety properties.
 Satisfy system safety assumptions

and constraints allocated to
software.

 Satisfy runtime monitor next
higher level requirements.

• Generate high-credibility evidence of
compliance with next higher level of
requirements.

Techniques
• Apply software-level formal method

techniques (e.g., model checking,
compositional verification, static
analysis, program synthesis, runtime
analysis) to ensure:
 System level stability and

convergence properties are
retained in the software
requirements and implementation.

 System level assumptions and
constraints allocated to software
are properly decomposed and
implemented.

C
-5

Accuracy,
Consistency

A-3.2, A-4.2,
A-4.9, A-5.6

• HLRs are
accurate and
consistent.

• LLRs are
accurate and
consistent.

• Software
architecture is
consistent.

• Source Code is
accurate and
consistent.

• HLRs are accurate,
unambiguous, sufficiently
detailed, consistent.

• LLRs are accurate,
unambiguous, sufficiently
detailed, consistent.

• Ensure that correct
relationship exists
between the components
of the software
architecture.

• Ensure that source code is
correct and consistent
with respect to stack
usage; fixed point
arithmetic overflow and
resolution; resource
contention; worst-case
execution timing;
exception handling; use
of uninitialized variables
or constants; unused
variables or constants;
and data corruption due to
task or interrupt conflicts.

• Difficulty verifying (via
reviews) accuracy and
consistency attributes.

• Adaptive system learned state
space makes it more difficult to
determine and verify worst-
case critical computer resource
usage and margins (memory,
throughput, WCET etc.).

Activities
• Verify that the software requirements

and code:
 Are accurate and consistent with

respect to system safety
properties.

 Are accurate and consistent with
respect to system safety
assumptions and constraints
allocated to software.

 Properly implement system-
defined computational resource
constraints and monitors.

Techniques
• Apply software-level formal method

techniques (e.g., model checking,
compositional verification, static
analysis, program synthesis, runtime
analysis).

C
-6

Compatibility
With Target

A-3.3, A-4.3,
A-4.10

• HLRs are
compatible with
target
computer.

• LLRs are
compatible with
target
computer.

• Software
architecture is
compatible with
target
computer.

• Ensure compatibility with
hardware (e.g., resource
utilization)

• Adaptive system learned state
space makes it more difficult to
determine and verify worst-
case critical computer resource
usage and margins (memory,
throughput/WCET, etc.).

Activities
• Verify that the software requirements

and code properly implement system-
defined computational resource
constraints and runtime monitors.

Techniques
• Apply software-level formal method

techniques (e.g., model checking,
compositional verification, static
analysis, program synthesis, runtime
analysis).

C
-7

Verifiability

A-3.4, A-4.4,
A-4.11, A-5.3

• HLRs are
verifiable.

• LLRs are
verifiable.

• Software
architecture is
verifiable.

• Source code is
verifiable.

• Ensure that HLRs can be
verified.

• Ensure that LLRs can be
verified.

• Ensure that architecture
can be verified.

• Ensure that architecture is
deterministic and
predicable.

• Ensure that source code
can be verified.

• Difficulty assessing if HLRs,
LLRs, and source code can be
verified (by test) for all
adaptive system configurations.

• Difficulty verifying HLRs,
LLRs, and source code produce
deterministic (predictable)
behavior.

Activities
• Identify test and non-test verification

techniques for requirements,
architecture, and source code.

Techniques
• Select appropriate software-level

formal method techniques (e.g.,
model checking, compositional
verification, static analysis, program
synthesis, and runtime analysis).

Notes
• Software aspects of certification of an

adaptive system will likely require a
greater reliance on verification by
analysis or simulation for objectives
related to verification by test

• Our chosen adaptive system is
deterministic given fully defined
initial conditions (including learned
state space values).

C
-8

Conformance
to Standards

A-3.5, A-4.5,
A-4.12, A-5.4

• HLRs conform
to standards.

• LLRs conform
to standards.

• Software
architecture
conforms to
standards.

• Source code
conforms to
standards.

• Ensure that HLRs are
consistent with HLR
standards.

• Ensure that LLRs are
consistent with design
standards.

• Ensure that architecture is
consistent with design
standards.

• Ensure that source code is
consistent with coding
standards.

• Might not be more difficult for
an adaptive system.

C
-9

Traceability

A-3.6, A-4.6,
A-5.5

• HLRs are
traceable to
system
requirements.

• LLRs are
traceable to
HLRs.

• Source code is

System requirements trace to
HLR:

• Ensure that HLRs fulfill
system requirements.

• Ensure that all the system
requirements (including
safety requirements)
allocated to software are
incorporated in the HLRs.

HLR trace to system
requirements:

• Identification of
functionality not
explicitly required by
system requirements.

• Ensure that derived HLRs
are captured, justified and
fed back to safety
process.

HLR trace to LLR:
• Ensure LLRs fulfill

HLRs.

LLR trace to HLR:
• Identification of

functionality not
explicitly required by
HLRs.

• Ensure that derived LLRs
are captured, justified and
fed back to safety
process.

• Difficulty verifying that trace
demonstrates complete
requirements decomposition
and implementation of all
intended functionality (i.e.,
complete behavior of an
adaptive system).

• Difficulty verifying that the
trace demonstrates absence of
unintended functionality.

Activities
• Verify that the software requirements

and code:
 Exhibit system safety properties.
 Satisfy system safety assumptions

and constraints allocated to
software.

 Satisfy runtime monitor next
higher level requirements.

Techniques
• Apply software-level formal method

techniques (e.g., model checking,
compositional verification, static
analysis, program synthesis, runtime
analysis) to ensure:
 System level stability &

convergence properties are
retained in the software
requirements and implementation.

 System level assumptions &
constraints allocated to software
are properly decomposed and
implemented.

C
-10

traceable to
LLRs.

LLR trace to Source Code:
• Ensure Source Code

fulfill LLRs.
Source code trace to LLR:
• Expose any source code

functionality (intended or
unintended) that is
unsupported by the LLRs.

• Ensure that unintended
functionality is removed.

Algorithm
Accuracy

A-3.7, A-4.7

• Algorithms are
accurate for
HLR.

• Algorithms are
accurate for
LLR.

• Ensure accuracy and
behavior of HLR
algorithms.

• Ensure accuracy and
behavior of LLR
algorithms.

• Difficulty verifying (via
reviews) that system-level
stability and convergence
properties are retained through
requirements decomposition
and implementation.

Activities
• Verify that the software requirements

and code:
 Have accurate algorithms with

respect to system safety
properties.

 Have accurate algorithms with
respect to system safety
assumptions and constraints
allocated to software.

 Have accurate algorithms with
respect to runtime monitors.

Techniques
• Apply software-level formal method

techniques (e.g., model checking,
compositional verification, static
analysis, program synthesis, runtime
analysis).

C
-11

Partitioning
Integrity

A-4.13

Software
partitioning
integrity is
confirmed.

• Ensure that partitioning
breaches are prevented or
isolated.

• Possibly no more difficult for
an adaptive system.

Completeness,
Correctness

A-5.7

Output of software
integration process
is complete and
correct.

• Ensure results of the
integration process are
complete and correct.

• Possibly no more difficult for
an adaptive system.

A-5.9 (Verification of
coverage.
Combined with A-
7.3, A-7.4)

A-6 Software testing
process

• Ensure that EOC satisfies
HLR and LLR.

• Ensure that EOC is
robust.

A-6.1, A-6.3 • EOC complies
with HLRs

• EOC complies
with LLRs

• Ensure that EOC satisfies
HLRs for normal range
inputs

• Ensure that EOC satisfies
LLRs for normal range
inputs

• Difficulty developing normal
range test cases for all possible
input space and learned state
space

• Difficulty developing adequate
set of robustness test cases to
expose unintended
functionality.

• Difficulty assuring software
dynamic stability and

Note:
• Software aspects of certification of an

adaptive system will likely require a
greater reliance on verification by
analysis or simulation for objectives
related to verification by test

• Certification process will likely need
to allow for the use of multi-layered
verification methods.

Activities
• Verify that the EOC:A-6.2, A-6.4 • EOC is robust • Ensure that EOC is robust

C
-12

with HLRs.

• EOC is robust
with LLRs.

such that it can continue to
operate correctly despite
abnormal inputs and
conditions

• Ensure that failure
detection and recovery
capabilities are effective
and robust in mitigating
hazards.

convergence by test for all
adaptive system learned states.

• Verification by test is likely
inadequate to show EOC is
correct for all possible adaptive
system behavior.

 Exhibits system safety properties
 Satisfies system safety

assumptions and constraints
allocated to software.

 Satisfies runtime monitor
requirements.

• Generate high-credibility evidence of
EOC compliance.

Techniques
• Apply software-level formal method

techniques (e.g., model checking,
compositional verification, static
analysis, program synthesis, runtime
analysis) to ensure:
 System level stability and

convergence properties are
retained in the software
requirements and implementation.

 System level assumptions and
constraints allocated to software
are properly decomposed and
implemented.

• Apply formal method techniques to
develop normal/robust test cases and
expected results for input space and
learned state space.

• Monte Carlo simulations.
• Need an analytical method for

establishing “equivalence classes” for
learned state space.

C
-13

• Continuity-based equivalency class
partitioning.

A-6.5 EOC is compatible
with target
computer.

• Ensure compatibility
with hardware (e.g.,
resource utilization).

• Ensure detection of
target-related errors or
compiler target-specific
errors.

• Learned state space makes it
more difficult to test worst-case
resource utilization.

Activities
• Verify that the software requirements

and code properly implement system-
defined computational resource
constraints and runtime monitors.

Techniques
• Apply software-level formal method

techniques (e.g., model checking,
compositional verification, static
analysis, program synthesis, runtime
analysis).

A-7 Verification of
verification
process.

• Ensure thorough testing
of the EOC.

• Ensure completeness of
HLR and LLR testing
requirements based test
coverage.

• Ensure completeness of
HLRs and LLRs
(Structural coverage).

• Ensure that unintended
functionality is exposed
(Structural coverage).

C
-14

A-7.1 Test procedures are
correct.

• Ensure that test cases
were accurately
developed into test
procedures and expected
results.

• Difficulty predicting correct
expected results covering the
input space, learning state
space and dynamic states (e.g.,
converging, converged)..

Activities
• Develop test/analysis/simulation

cases into test/analysis/simulation
procedures.

Techniques
• Apply formal method techniques to

develop normal/robust test cases and
expected results for input space and
learned state space.

A-7.2 Test results are
correct and
discrepancies
explained.

• Ensure that test results
are correct and that
discrepancies between
actual and expected
results are explained.

• Possibly no more difficult for
an adaptive system.

C
-15

A-7.3, A-7.4,
A-5.9

Test coverage of
HLRs is achieved.

Test coverage of
LLRs is achieved.

Verification of
parameter data item
file is achieved.

• Ensure completeness of
HLR test cases.

• Ensure completeness of
LLR test cases.

• Ensure completeness of
verification with respect
to parameter data item
file (e.g., database)
elements.

• Difficulty developing normal
range test cases for all adaptive
system behavior.

• Difficulty developing adequate
set of robustness test cases to
expose unintended
functionality.

• Difficulty assuring software
dynamic stability and
convergence by test for learned
state space and input space.

Note:
• Software aspects of certification of an

adaptive system will likely require a
greater reliance on verification by
analysis or simulation for objectives
related to verification by test.

• Certification process will likely need
to allow for the use of multi-layered
verification methods. Test coverage
trace may need to be expanded to test,
analysis, and simulation coverage
trace.

Activities
• Ensure complete

test/analysis/simulation coverage
trace.

Techniques
• Augment testing with software-level

formal method techniques (e.g.,
model checking, compositional
verification, static analysis, program
synthesis, runtime analysis) to ensure:
 System level stability and

convergence properties are
retained in the software
requirements and implementation.

 System level assumptions and
constraints allocated to software
are properly decomposed and
implemented.

• Monte Carlo simulations.

C
-16

A-7.5 Test coverage of
software structure
(modified
condition/decision)
is achieved.

• Ensure completeness of
HLRs and LLRs.

• Ensure that unintended
functionality is exposed.

• Ensure that unreachable
code is exposed.

• Ensure that the compiler
does not inject
functionality that was not
specified in the source
code.

• Ensure that requirements
are sufficiently detailed
(similar decision
structure as the code).

• Structural coverage analysis
insufficient to measure
completeness of
test/analysis/simulation of all
possible input space and
learned state space.

Activities
• Ensure complete decision/statement

coverage.

Techniques
• Static analysis tools. Rely on FM

proofs to verify all program path
executions.

• Would still not be adequate for
MC/DC or decisions unrelated to
branching.
 Need an analytical method to

measure verification coverage
completeness of learned state
space.

A-7.6 Test coverage of
software structure
(decision coverage)
is achieved.

A-7.7 Test coverage of
software structure
(statement
coverage) is
achieved.

A-7.8 Test coverage of
software structure
(data coupling and
control coupling) is
achieved.

• Ensure test coverage with
respect to the software
architecture (specifically
the data flow between
software components and t
control of software
component execution).

• Ensure that a sufficient
amount of hardware/
software integration
testing and/or software
integration testing to
verify that the software
architecture is correctly

C
-17

implemented with
respect to the
requirements.

A-7.9 Verification of
additional code that
cannot be traced to
source code is
achieved.

• Ensure that the EOC is
evaluated for any
functionality added by
the compiler.

• Ensure that compiler
added functionality has
no safety impact.

12.2 Tool qualification. • Ensure that tool provides
confidence at least
equivalent to that of the
process(es) eliminated,
reduced or automated.

• Difficulty with tool
qualification of development
tools (TQL-1 through TQL-4)
for the auto generation of
adaptive source or object code.

• Difficulty with tool
qualification of verification
tools (TQL-4 or TQL-5)
intended to simulate all
operating conditions or invoke
complete (evolving) software
behavior.

HLR = high-level requirement; LLR = low-level requirement; EOC = executable object code; TQL = tool qualification level; WCET =
worst-case execution time

	Abstract
	Key Words
	Table of Contents
	List of Figures
	List of Tables

