
Tracking non-Stationary Optimal Solution by Particle Swarm Optimizer

X. Cui
1
, C. T. Hardin

2
, R. K. Ragade

2
, T. E. Potok

1
 and A. S. Elmaghraby

2

1
Applied Software Engineering Research

Oak Ridge National Laboratory

Oak Ridge, TN 37831-6085
2
Computer Engineering and Computer Science Department

University of Louisville

Louisville, KY 40292

cuix, potokte@ornl.gov

cthard01,rkraga01,adel@Louisville.edu

Abstract

In the real world, we have to frequently deal with

searching for and tracking an optimal solution in a

dynamic environment. This demands that the algorithm

not only find the optimal solution but also track the

trajectory of the solution in a dynamic environment.

Particle Swarm Optimization (PSO) is a population-

based stochastic optimization technique, which can

find an optimal, or near optimal, solution to a

numerical and qualitative problem. However, the

traditional PSO algorithm lacks the ability to track the

optimal solution in a dynamic environment. In this

paper, we present a modified PSO algorithm that can

be used for tracking a non-stationary optimal solution

in a dynamically changing environment.

1. Introduction

A dynamically changing solution space presents a

challenge in tracking an optimal solution. Because of

the continual changing of both the external

environment and parameters, the optimum solution in

the environment will also change with time. This

demands that the optimal algorithm not only can find

the solution in short time but also track the trajectory

of the optimal solution in a dynamic environment.

Particle Swarm Optimization (PSO) [8] has been

proven to be both effective and quick to solve a

diverse set of optimization problems [9]. In the past

several years, PSO has been successfully applied in

many research and application areas [4, 7, 11]. It has

been demonstrated that using PSO got better results in

a faster, cheaper way than using other methods [6, 12].

However, the traditional PSO algorithm lacks the

ability to track the optimal solution in a dynamic

environment. The PSO algorithm does not have the

mechanism to respond to the environment change. In

this paper, we propose a Tracking Dynamical PSO

(TDPSO), which is a modified PSO that can be used

for searching and tracking the non-stationary optimal

solution in a dynamically changing environment.

The remainder of this paper is organized as follows:

In section 2, a brief overview of PSO is presented. A

discussion of the shortcomings of the original PSO in a

dynamic environment is presented in section 3.

Various possible modified PSO approaches are also

presented in Section 3. In section 4, the structure and

algorithms used in our research are described in detail.

The setup and results of the experiments for comparing

the performance of TDPSO and PSO in dynamical

environment are illustrated in section 5. Conclusion

and future work are in section 6.

2. Background

2.1 PSO algorithm

PSO was originally developed by Eberhart and

Kennedy in 1995 [8], inspired by the social behavior

of the bird flock. In the PSO algorithm, the birds in a

flock are symbolically represented as particles. These

particles can be considered as simple agents “flying”

through a problem space. A problem space in PSO

may have as many dimensions as needed to model the

problem space. A particle’s location in the multi-

dimensional problem space represents one solution for

the problem. When a particle moves to a new location,

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05)

0-7695-2294-7/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 08:05:27 UTC from IEEE Xplore. Restrictions apply.

a different problem solution is generated. This solution

is evaluated by a fitness function that provides a

quantitative value of the solution’s utility.

The velocity and direction of each particle moving

along each dimension of the problem space will be

altered at each generation of movement. It is this

particle’s personal experience combined with its

neighbors’ experience that influences the movement of

each particle through a problem space. For every

generation, the particle’s new location is computed by

adding the particle’s current velocity V-vector to its

location X-vector. Mathematically, given a multi-

dimensional problem space, the ith particle changes its

velocity and location according to the following

equations [6, 8]:

)(**)(*** 2211 idgdidididid xprandcxprandcvwv (1a)

ididid vxx (1b)

where, w is the inertia weight; pid is the location of the

particle that experiences the best fitness value; pgd is

the location of the particles in the population

experienced the highest best fitness value; c1 and c2 are

acceleration constants; d is the dimension of the

problem space; rand1, rand2 are random values in the

range of (0,1).

Equation 1a requires each particle to record its

current coordinate Xid, its velocity Vid that indicates the

speed of its movement along the dimensions in a

problem space, the coordinates Pid and Pgd where the

best fitness values were computed. The best fitness

values are updated at each generation based on

equation 2, where the symbol f denotes the fitness

function; Pi (t) denotes the best fitness values and the

coordination where the value calculated; and t denotes

the generation step.

)1(

)(
)1(

tX

tP
tP

i

i

i
))(())1((

))(())1((

tXftXf

tXftXf

ii

ii (2)

Each particle’s structure in a PSO algorithm is

relatively simple and only has limited amount of

memory. It merely stores the personal best fitness

value location vector Pid , the global best fitness value

location vector Pgd and the fitness values f(Pid) and

f(Pgd). We consider these stored values as particle’s

experience or knowledge. Equation 2 is the particle’s

knowledge updating mechanism. In PSO, the

knowledge will not be updated until this particle

encounters a new vector location with a higher fitness

value than the value currently stored in the particle’s

memory.

In a dynamic environment, the fitness value of each

point in the problem space may change over time. The

location vector with the highest fitness value ever

found by a specific particle may not have the highest

fitness value after several generations. It requires the

particle to renew its memory whenever the real

environment status does not match the particle’s

memorized knowledge. However, the traditional PSO

lacks an updating mechanism to renew the particles’

memory when the environment changed. That causes

the particle to continue using the obsolete knowledge

to direct its search, which inhibits the particle from

following the path of the current optimal solution and

results the particle to be easily trapped in the region of

the former optimal solution.

2.2. Related work on PSO in the dynamical

environment

To solve the memory renewal problem in a

dynamic environment, Carlisle proposed the adaptive

particle swarm optimization (APSO) [3]. By

periodically resetting all particles’ memory and

replacing their best fitness value and location vector

with the particles’ current location vector and fitness

value, APSO forces the particles to “forget” their

former experience. Eberhart and his colleagues

published the same idea in [9]. The major disadvantage

of APSO is the difficulties in determining the reset

frequency. Without prior-knowledge about the

environment changing frequency, the particle’s

memory reset frequency needs to be set to a high value

for capturing the changing step of the environment.

However, the high reset frequency will reduce the

efficiency of the convergence of PSO. The essence of

the PSO algorithm lies in each particle’s learning from

both its past search experience and its neighbor’s past

search experience and utilizing this knowledge to

guide its next moving velocity. Periodic resetting will

cause all particles to lose their knowledge and restart

learning. This decreases the search efficiency of the

swarm. Especially during the initial period of

searching, frequently resetting the personal best vector

will render particles unable to quickly converge on the

optimal solution.

Another approach was also proposed by Carlisle in

2001 [5]. Carlisle introduced a new notion, “sentry” in

his APSO algorithm. The “sentry” is one or many

special designed particles, which are deployed in the

problem space and used for monitoring the

environment changing. When the “sentry” detects a

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05)

0-7695-2294-7/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 08:05:27 UTC from IEEE Xplore. Restrictions apply.

change in the environment, it will inform all others and

force other particles to reset their memory. However,

designing a particle as a sentry to monitor the

environment will increase the complexity of the whole

system. In addition, this algorithm changes the

classical PSO’s ideally decentralized processing model

as an essentially centralized control model and reduces

the robustness of the modified PSO.

3. Tracking Dynamic PSO Approach

It is necessary to find a new method for particles to

renew their memory without any centralized control

and to maintain simplicity of each particle. In this

research, we propose a new modified PSO, the

tracking dynamic PSO approach (TDPSO) to satisfy

these requirements. In TDPSO, there is no specially

designed particle to monitor the environment. Same as

the traditional PSO, each particle uses the equation 1 to

determine its next velocity. The only modification is

the particle’s best fitness value update mechanism.

Instead of using equation 2 to update the fitness value,

we use equation 3 for the fitness value update.

)1(

*)(
)1(

tX

TtP
tP

i

i

i
TtPtXf

TtPtXf

ii

ii

*)())1((

*)())1(((3)

In equation 3, a new notion, the evaporation

constant T, is introduced. T has a value between 0 and

1. The personal fitness value and global fitness value

that stored in each particle’s memory will gradually

evaporate (decrease) at the rate of the evaporation

constant over time. After the value of fitness

evaporates for a period, the fitness value, X-fitness, of

the current location may be higher than the evaporated

fitness values and will replace the old fitness value.

Although all particles have the same evaporation

constant T, each particle’s update frequency may not

same. Depending on the particle’s current stored best

fitness value f(P) and the current fitness value f(X) the

particle acquired, the particle will more frequently

update the best fitness value by using its current fitness

value when the f(P) is lower and the f(X) is higher.

However, when the f(P) is higher and the f(X) is lower

in a changing environment, it may indicate the

particle’s current location is farther away from the

current optimal solution compared to the distance

between the optimal solution and the best fitness

value’s position stored in the particle’s memory. In this

situation, it would be better to keep the best fitness

value in the particle’s memory until after several

generations passed and the best fitness value has

become too obsolete. The fitness value update equation

enables each particle to self-adapt to the changing

environment.

4. Experimental Implementations

4.1. Dynamical environment simulation

The simulated dynamic environment can be

constructed by starting with a simple parabolic

function [1] as described in equation 4. This equation

has been used to simulate the dynamic environment in

[1, 3, 5].

n

i

ixxf
1

2)((4)

In the equation 4, n is the dimension number of the

problem space and f can be considered as the fitness

value evaluation function. The optimal point (solution)

is a vector (0, …., 0). Based on this parabolic function,

an environment with a dynamically changed optimal

solution can be generated by adding an offset on xi in

each dimension. Equation 5 represents this dynamic

environment, where si is the offset in dimension i.

n

i

ii sxxf
1

2)()((5)

Different offset movement functions generate

different types of dynamic environments. In this

research, to implement a randomly moving optimal

solution, the update function of si is described in

equation 6:

)1,0(*)()1(randvtsts kii (6)

where vk is a constant represent the speed of the offset

and rand(0,1) is a Gaussian random function.

Increasing dimensionality of the solution space

would increase the systematic complexity level. To

simplify the simulation and improve the experimental

speed, we choose the three dimensions parabolic

function as the base environment function in our

experiments. The three dimension function has a

minimum point at (0,0,0) as the optimal solution. The

moving speed vk of the offset are set to 0.02*MAX,

0.05*MAX, and 0.1*MAX, respectively in the

simulation. The “MAX” indicates the maximum

velocity of the particles in the simulation.

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05)

0-7695-2294-7/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 08:05:27 UTC from IEEE Xplore. Restrictions apply.

4.2. Experiment Setup and Results

To evaluate the efficiency of the TDPSO in the

dynamic environment and to determine the best

evaporation constant, two experiments are performed.

The first experiment is to compare the dynamic

tracking ability of the TDPSO with PSO. The second is

to investigate the influence of the evaporation constant

on the performance of TDPSO.

In the first experiment, TDPSO and PSO have the

same configuration and are tested in the same dynamic

environment. In the TDPSO algorithm, the particles

use equation 3 to update their best fitness value and the

evaporation constant T is set as exp(-1) according to

[2]. Twenty particles are randomly distributed in an

environment with 20 wide in each dimension.

According to Engerlbrecht’s work, in equition 1a and

1b, c1 and c2 are set to 1.49 and Vmax is set to 0.5 [10].

The w value is set to 0.72 [4, 12]. TDPSO and PSO are

applied on both the static environment and a dynamic

environment with a randomly moving optimal solution.

For evaluating the performance of the tracking ability

of each algorithm in the dynamical environment,

instead of using the distance between the optimal

solution and the particle that has the highest fitness

evaluation value, we choose the sum distance dsum

between all particles and optimal solution point as the

algorithm evaluation value. The summed value

demonstrates the tracking ability of algorithm in the

entire searching procedure. If this value is small, the

particles can keep themselves in a short distance from

the goal at anytime, regardless of the goal’s movement.

The results of the first experiment are illustrated in

Figure 1, which shows the performance results of

searching and tracking of TDPSO and PSO in both the

static and dynamic environments. The distance

summation from each particle to the optimal solution at

each generation is used to evaluate the performance of

the particle system. The smaller this value, the closer

all particles to the optimal solution are.

As shown in the figure 1 (a), both TDPSO and PSO

perform efficiently in the static environment. It takes

nearly fifty generations for all particles to converge in

the region of the goal. However, in the dynamic

environment, the traditional PSO fails to track the

randomly moving optimal solution. As shown in figure

1 (b) (c) (d), the traditional PSO cannot track the

movement of the goal and all particles are trapped at

the 40th generation. However, TDPSO can quickly

converge on the optimal solution and maintain the

shortest distance from the optimal solution.

(a)

(b)

(c)

(d)

Figure 1 Tracking performance comparison (a)
Static environment; (b) Offset moving speed =
0.02 * max; (c) Offset moving speed = 0.05 *
max; (d) Offset moving speed = 0.1 * max

In the second experiment, the impacts of different

evaporation constants of the personal fitness value and

the global fitness value on the TDPSO algorithm’s

performance are investigated. Different pairs of

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05)

0-7695-2294-7/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 08:05:27 UTC from IEEE Xplore. Restrictions apply.

evaporation constants for personal fitness value and

global fitness value are tested in the simulations. The

sum distance between all particles and the optimal

solution are recorded at each generation.

To easily draw a 2D graph to display the

performance comparing of the algorithm on different

evaporation constants, we use the summation value of

the distances of the whole generation during the

simulation as the evaluation for the performance. To

reduce the impact of the initial position of the particles

on the summary value, the summed value only sums

the distance data between the 30th generation and the

200th generation. Figure 2 illustrates the dsum values

of different pairs of evaporation constants when the

optimal goal moves randomly in the environment.

From the graphs, we can conclude that: the optimal

value of the personal fitness value evaporation

constant Tp ranges between exp(-0.6) and exp(-0.8).

The optimal value of personal fitness value

evaporation constant Tg ranges between exp(-1) and

exp(-1.3).

5. Discussion and Conclusion

Most papers reporting applications of optimization

algorithms only discuss the scenario of a static

environment [7, 10, 11, 12]. The performance

evaluation of various approaches is mainly based on

how fast an approach can find the optimal point in the

benchmark problems. PSO has proven to be very

effective in applications with static environment.

However, in the real world, a frequently changing

solution space causes the optimal solutions to change

over time. The optimal solution found at time T1 may

no longer valid at time T2. When the problem space is

dynamically changing, the goal of optimization is not

only to acquire the optimal solution but also to track

their progression through the solution space as closely

as possible. The traditional PSO has a difficulty to

track the solutions. The reason is that PSO lacks a

mechanism to update each particle’s knowledge

obtained from the environment. That will induce a bias

toward searching the region that once held the

optimum; however, this region may not contain the

more recent goal.

In this paper, we present a new approach, TDPSO,

a modified PSO, for tracking the optimization solution

in a dynamically changing environment. Unlike other

modified PSO for the dynamical environment, which

needs one or more sentry particles to control other

particles’ action, each particle in TDPSO individually

updates its knowledge based on the local environment

status that the particle perceived. Furthermore, all

particles in the system are homogenous.

(a)

(b)

(c)

Figure 2 Tracking performance comparisons
of different pair of evaporation constant. (a)
Offset moving speed = 0.1 * max; (b) Offset
moving speed = 0.2 * max; (c) Offset moving
speed = 0.4 * max

Goal Randomly Moving at 0.1*Max

10

15

20

25

30

35

40

45

0 0.5 1 1.5 2 2.5 3 3.5

g

S
u

m
 o

f
D

is
ta

n
c

e
s

 f
ro

m
 P

a
rt

ic
le

s

to
 S

o
u

rc
e

s

P=2.0

P=1.8

P=1.6

p=1.4

p=1.2

p=1.0

p=0.8

p=0.6

p=0.4

p=0.2

Goal Randomly Moving at 0.2*Max

20

25

30

35

40

45

50

55

60

0 0.5 1 1.5 2 2.5 3 3.5

g

S
u

m
 o

f
D

is
ta

n
c

e
s

 f
ro

m

P
a

rt
ic

le
s

 t
o

 S
o

u
rc

e

P=2.0

P=1.8

P=1.6

P=1.4

P=1.2

P=1.0

P=0.8

P=0.6

P=0.4

P=0.2

Goal Randomly Moving at 0.4*Max

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5 3 3.5

g

S
u

m
 o

f
D

is
ta

n
c

e
s

 f
ro

m
 P

a
rt

ic
le

s

to
 S

o
u

rc
e

P=2.0

P=1.8

P=1.6

P=1.4

P=1.2

P=1.0

P=0.8

P=0.6

P=0.4

P=0.2

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05)

0-7695-2294-7/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 08:05:27 UTC from IEEE Xplore. Restrictions apply.

Each particle’s memory has an evaporation

constant to control the rate of the knowledge

evaporation (decay). The updating frequency of the

particle’s memory is determined by the knowledge

evaporation rate and the current fitness value the

particle perceived from the point it located. Each

particle in the system may update its memory in

different generations.

The simulation experiments indicate that TDPSO

can efficiently track the movement of an optimal

solution in a dynamically changing environment, while

the traditional PSO failed. Because each particle

updates its memory only based on its perception and

the knowledge evaporation rate, the system can avoid

losing tracking of the optimal solution as happened in

other modified PSO approaches that are based on

resetting the memory periodically.

We also illustrated the impact of different

evaporation constant parameters on the performance of

tracking the dynamically changed optimal solution in

TDPSO. In the simulation where the optimal solution

moves at varying velocities, TDPSO would have a

better performance if the evaporation constant of the

personal best value and global best value are set in the

range of (exp(-0.6), exp(-0.8)) and (exp(-1), exp(-1.3),

separately. An alternative solution to the fixed

evaporation rate is to use reinforce learning. If each

particle can implement the reinforcement mechanism

for dynamically adjusting the best fitness value’s

evaporation rate, the entire system may have better

performance than setting a fixed evaporation rate for

all particles. However, that will increase the design

complexity of each particle.

6. References

[1] Angeline, P. (1997). Tracking Extrema in

Dynamic Environments, Proceedings of the

Sixth Annual Conference on Evolutionary

Programming VI, Indianapolis, IN, USA. pp.

335-345

[2] Benjafield, J. (1992). Cognition, Prentice Hall,

1992, Englewood Cliffs, New Jersey, USA

[3] Carlisle, A., and Dozier, G., (2000). Adapting

particle swarm optimization to dynamic

environments. In Int. Conf. on Artificial

Intelligence, Monte Carlo Motel, Las Vegas,

NV, USA

[4] Carlisle, A. and Dozier, G., (2001a). An Off-

The-Shelf PSO, Proceedings of the 2001

Workshop on Particle Swarm Optimization,

Indianapolis, IN, USA

[5] Carlisle, A., and Dozier, G. (2001b). Tracking

changing extrema with particle swarm

optimizer. Tech. Rep. CSSE01-08, Auburn

University, Auburn, AL, USA

[6] Clerc, M., (1999). The swarm and the queen:

towards a deterministic and adaptive particle

swarm optimization. Proceedings, ICEC,

Washington, DC, USA

[7] Cui X., Hardin T., Ragade R. K., and

Elmaghraby A. S., A Swarm Approach for

Emission Sources Localization, The 16th IEEE

International Conference on Tools with

Artificial Intelligence, 2004, Boca Raton,

Florida, USA

[8] Eberhart, R. C., and Kennedy, J., (1995). A new

optimizer using particle swarm theory. In Sixth

International Symposium on Micro Machine

and Human Science, agoya, Japan, IEEE Press

[9] Eberhart R.C. and Shi Y., (2001a). Tracking and

optimizing dynamic systems with particle

swarms. Proc CEC 2001. Piscataway, NJ, USA

[10] Engelbrecht A. P., (2002). Computational

Intelligence, John Wiley & Sons Ltd, 2002,

Chichester, West Sussex, England

[11] Hardin T., Cui X., Ragade R. K., Graham J. H.,

and Elmaghraby A. S., (2004). A Modified

Particle Swarm Algorithm for Robotic Mapping

of Hazardous Environments, The 2004 World

Automation Congress, SEVILLE, Spain

[12] Shi, Y. H., Eberhart, R. C., (1998). Parameter

Selection in Particle Swarm Optimization, The

7th Annual Conference on Evolutionary

Programming, San Diego, USA

Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First
ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05)

0-7695-2294-7/05 $20.00 © 2005 IEEE
Authorized licensed use limited to: Wuhan University. Downloaded on October 08,2021 at 08:05:27 UTC from IEEE Xplore. Restrictions apply.

