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Abstract

In the real world, we have to frequently deal with 

searching for and tracking an optimal solution in a 

dynamic environment. This demands that the algorithm 

not only find the optimal solution but also track the 

trajectory of the solution in a dynamic environment. 

Particle Swarm Optimization (PSO) is a population-

based stochastic optimization technique, which can 

find an optimal, or near optimal, solution to a 

numerical and qualitative problem. However, the 

traditional PSO algorithm lacks the ability to track the 

optimal solution in a dynamic environment. In this 

paper, we present a modified PSO algorithm that can 

be used for tracking a non-stationary optimal solution 

in a dynamically changing environment. 

1. Introduction 

A dynamically changing solution space presents a 

challenge in tracking an optimal solution. Because of 

the continual changing of both the external 

environment and parameters, the optimum solution in 

the environment will also change with time. This 

demands that the optimal algorithm not only can find 

the solution in short time but also track the trajectory 

of the optimal solution in a dynamic environment. 

Particle Swarm Optimization (PSO) [8] has been 

proven to be both effective and quick to solve a 

diverse set of optimization problems [9]. In the past 

several years, PSO has been successfully applied in 

many research and application areas [4, 7, 11]. It has 

been demonstrated that using PSO got better results in 

a faster, cheaper way than using other methods [6, 12]. 

However, the traditional PSO algorithm lacks the 

ability to track the optimal solution in a dynamic 

environment. The PSO algorithm does not have the 

mechanism to respond to the environment change. In 

this paper, we propose a Tracking Dynamical PSO 

(TDPSO), which is a modified PSO that can be used 

for searching and tracking the non-stationary optimal 

solution in a dynamically changing environment.  

The remainder of this paper is organized as follows: 

In section 2, a brief overview of PSO is presented. A 

discussion of the shortcomings of the original PSO in a 

dynamic environment is presented in section 3. 

Various possible modified PSO approaches are also 

presented in Section 3. In section 4, the structure and 

algorithms used in our research are described in detail. 

The setup and results of the experiments for comparing 

the performance of TDPSO and PSO in dynamical 

environment are illustrated in section 5. Conclusion 

and future work are in section 6.    

2. Background 

2.1 PSO algorithm 

PSO was originally developed by Eberhart and 

Kennedy in 1995 [8], inspired by the social behavior 

of the bird flock. In the PSO algorithm, the birds in a 

flock are symbolically represented as particles. These 

particles can be considered as simple agents “flying” 

through a problem space. A problem space in PSO 

may have as many dimensions as needed to model the 

problem space. A particle’s location in the multi-

dimensional problem space represents one solution for 

the problem. When a particle moves to a new location, 
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a different problem solution is generated. This solution 

is evaluated by a fitness function that provides a 

quantitative value of the solution’s utility.  

The velocity and direction of each particle moving 

along each dimension of the problem space will be 

altered at each generation of movement. It is this 

particle’s personal experience combined with its 

neighbors’ experience that influences the movement of 

each particle through a problem space. For every 

generation, the particle’s new location is computed by 

adding the particle’s current velocity V-vector to its 

location X-vector. Mathematically, given a multi-

dimensional problem space, the ith particle changes its 

velocity and location according to the following 

equations [6, 8]:  

)(**)(*** 2211 idgdidididid xprandcxprandcvwv (1a)

ididid vxx         (1b)

where, w is the inertia weight; pid is the location of the 

particle that experiences the best fitness value; pgd is

the location of the particles in the population 

experienced the highest best fitness value; c1 and c2 are 

acceleration constants; d is the dimension of the 

problem space; rand1, rand2 are random values in the 

range of (0,1).

Equation 1a requires each particle to record its 

current coordinate Xid, its velocity Vid that indicates the 

speed of its movement along the dimensions in a 

problem space, the coordinates Pid and Pgd where the 

best fitness values were computed. The best fitness 

values are updated at each generation based on 

equation 2, where the symbol f denotes the fitness 

function; Pi (t) denotes the best fitness values and the 

coordination where the value calculated; and t denotes 

the generation step.  

)1(

)(
)1(

tX

tP
tP

i

i

i
))(())1((

))(())1((

tXftXf

tXftXf

ii

ii          (2)

Each particle’s structure in a PSO algorithm is 

relatively simple and only has limited amount of 

memory. It merely stores the personal best fitness 

value location vector Pid , the global best fitness value 

location vector Pgd and the fitness values f(Pid) and

f(Pgd). We consider these stored values as particle’s 

experience or knowledge. Equation 2 is the particle’s 

knowledge updating mechanism. In PSO, the 

knowledge will not be updated until this particle 

encounters a new vector location with a higher fitness 

value than the value currently stored in the particle’s 

memory.  

In a dynamic environment, the fitness value of each 

point in the problem space may change over time. The 

location vector with the highest fitness value ever 

found by a specific particle may not have the highest 

fitness value after several generations. It requires the 

particle to renew its memory whenever the real 

environment status does not match the particle’s 

memorized knowledge. However, the traditional PSO 

lacks an updating mechanism to renew the particles’ 

memory when the environment changed. That causes 

the particle to continue using the obsolete knowledge 

to direct its search, which inhibits the particle from 

following the path of the current optimal solution and 

results the particle to be easily trapped in the region of 

the former optimal solution. 

2.2. Related work on PSO in the dynamical 

environment

To solve the memory renewal problem in a 

dynamic environment, Carlisle proposed the adaptive 

particle swarm optimization (APSO) [3]. By 

periodically resetting all particles’ memory and 

replacing their best fitness value and location vector 

with the particles’ current location vector and fitness 

value, APSO forces the particles to “forget” their 

former experience. Eberhart and his colleagues 

published the same idea in [9]. The major disadvantage 

of APSO is the difficulties in determining the reset 

frequency. Without prior-knowledge about the 

environment changing frequency, the particle’s 

memory reset frequency needs to be set to a high value 

for capturing the changing step of the environment.  

However, the high reset frequency will reduce the 

efficiency of the convergence of PSO. The essence of 

the PSO algorithm lies in each particle’s learning from 

both its past search experience and its neighbor’s past 

search experience and utilizing this knowledge to 

guide its next moving velocity. Periodic resetting will 

cause all particles to lose their knowledge and restart 

learning. This decreases the search efficiency of the 

swarm. Especially during the initial period of 

searching, frequently resetting the personal best vector 

will render particles unable to quickly converge on the 

optimal solution.   

Another approach was also proposed by Carlisle in 

2001 [5]. Carlisle introduced a new notion, “sentry” in 

his APSO algorithm. The “sentry” is one or many 

special designed particles, which are deployed in the 

problem space and used for monitoring the 

environment changing. When the “sentry” detects a 
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change in the environment, it will inform all others and 

force other particles to reset their memory. However, 

designing a particle as a sentry to monitor the 

environment will increase the complexity of the whole 

system. In addition, this algorithm changes the 

classical PSO’s ideally decentralized processing model 

as an essentially centralized control model and reduces 

the robustness of the modified PSO.  

3. Tracking Dynamic PSO Approach 

It is necessary to find a new method for particles to 

renew their memory without any centralized control 

and to maintain simplicity of each particle. In this 

research, we propose a new modified PSO, the 

tracking dynamic PSO approach (TDPSO) to satisfy 

these requirements. In TDPSO, there is no specially 

designed particle to monitor the environment. Same as 

the traditional PSO, each particle uses the equation 1 to 

determine its next velocity. The only modification is 

the particle’s best fitness value update mechanism. 

Instead of using equation 2 to update the fitness value, 

we use equation 3 for the fitness value update.  
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In equation 3, a new notion, the evaporation 

constant T, is introduced. T has a value between 0 and 

1. The personal fitness value and global fitness value 

that stored in each particle’s memory will gradually 

evaporate (decrease) at the rate of the evaporation 

constant over time. After the value of fitness 

evaporates for a period, the fitness value, X-fitness, of 

the current location may be higher than the evaporated 

fitness values and will replace the old fitness value. 

Although all particles have the same evaporation 

constant T, each particle’s update frequency may not 

same. Depending on the particle’s current stored best 

fitness value f(P) and the current fitness value f(X) the 

particle acquired, the particle will more frequently 

update the best fitness value by using its current fitness 

value when the f(P) is lower and the f(X) is higher. 

However, when the f(P) is higher and the f(X) is lower 

in a changing environment, it may indicate the 

particle’s current location is farther away from the 

current optimal solution compared to the distance 

between the optimal solution and the best fitness 

value’s position stored in the particle’s memory. In this 

situation, it would be better to keep the best fitness 

value in the particle’s memory until after several 

generations passed and the best fitness value has 

become too obsolete. The fitness value update equation 

enables each particle to self-adapt to the changing 

environment.  

4. Experimental Implementations 

4.1. Dynamical environment simulation 

The simulated dynamic environment can be 

constructed by starting with a simple parabolic 

function [1] as described in equation 4. This equation 

has been used to simulate the dynamic environment in 

[1, 3, 5]. 

n

i
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1

2)(        (4) 

In the equation 4, n is the dimension number of the 

problem space and f can be considered as the fitness 

value evaluation function. The optimal point (solution) 

is a vector (0, …., 0). Based on this parabolic function, 

an environment with a dynamically changed optimal 

solution can be generated by adding an offset on xi in 

each dimension. Equation 5 represents this dynamic 

environment, where si is the offset in dimension i.

n

i
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Different offset movement functions generate 

different types of dynamic environments. In this 

research, to implement a randomly moving optimal 

solution, the update function of si is described in 

equation 6:  

)1,0(*)()1( randvtsts kii      (6) 

where vk is a constant represent the speed of the offset 

and rand(0,1) is a Gaussian random function.   

Increasing dimensionality of the solution space 

would increase the systematic complexity level. To 

simplify the simulation and improve the experimental 

speed, we choose the three dimensions parabolic 

function as the base environment function in our 

experiments. The three dimension function has a 

minimum point at (0,0,0) as the optimal solution. The 

moving speed vk of the offset are set to 0.02*MAX, 

0.05*MAX, and 0.1*MAX, respectively in the 

simulation. The “MAX” indicates the maximum 

velocity of the particles in the simulation.  
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4.2. Experiment Setup and Results 

To evaluate the efficiency of the TDPSO in the 

dynamic environment and to determine the best 

evaporation constant, two experiments are performed. 

The first experiment is to compare the dynamic 

tracking ability of the TDPSO with PSO. The second is 

to investigate the influence of the evaporation constant 

on the performance of TDPSO. 

In the first experiment, TDPSO and PSO have the 

same configuration and are tested in the same dynamic 

environment. In the TDPSO algorithm, the particles 

use equation 3 to update their best fitness value and the 

evaporation constant T is set as exp(-1) according to 

[2]. Twenty particles are randomly distributed in an 

environment with 20 wide in each dimension. 

According to Engerlbrecht’s work, in equition 1a and 

1b, c1 and c2 are set to 1.49 and Vmax is set to 0.5 [10]. 

The w value is set to 0.72 [4, 12]. TDPSO and PSO are 

applied on both the static environment and a dynamic 

environment with a randomly moving optimal solution. 

For evaluating the performance of the tracking ability 

of each algorithm in the dynamical environment, 

instead of using the distance between the optimal 

solution and the particle that has the highest fitness 

evaluation value, we choose the sum distance dsum

between all particles and optimal solution point as the 

algorithm evaluation value. The summed value 

demonstrates the tracking ability of algorithm in the 

entire searching procedure. If this value is small, the 

particles can keep themselves in a short distance from 

the goal at anytime, regardless of the goal’s movement. 

The results of the first experiment are illustrated in 

Figure 1, which shows the performance results of 

searching and tracking of TDPSO and PSO in both the 

static and dynamic environments. The distance 

summation from each particle to the optimal solution at 

each generation is used to evaluate the performance of 

the particle system. The smaller this value, the closer 

all particles to the optimal solution are.  

As shown in the figure 1 (a), both TDPSO and PSO 

perform efficiently in the static environment. It takes 

nearly fifty generations for all particles to converge in 

the region of the goal. However, in the dynamic 

environment, the traditional PSO fails to track the 

randomly moving optimal solution. As shown in figure 

1 (b) (c) (d), the traditional PSO cannot track the 

movement of the goal and all particles are trapped at 

the 40th generation. However, TDPSO can quickly 

converge on the optimal solution and maintain the 

shortest distance from the optimal solution.  

(a)

(b)

(c)

(d)

Figure 1 Tracking performance comparison (a) 
Static environment; (b) Offset moving speed = 
0.02 * max; (c) Offset moving speed = 0.05 * 
max; (d) Offset moving speed = 0.1 * max 

In the second experiment, the impacts of different 

evaporation constants of the personal fitness value and 

the global fitness value on the TDPSO algorithm’s 

performance are investigated. Different pairs of 
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evaporation constants for personal fitness value and 

global fitness value are tested in the simulations. The 

sum distance between all particles and the optimal 

solution are recorded at each generation.

To easily draw a 2D graph to display the 

performance comparing of the algorithm on different 

evaporation constants, we use the summation value of 

the distances of the whole generation during the 

simulation as the evaluation for the performance. To 

reduce the impact of the initial position of the particles 

on the summary value, the summed value only sums 

the distance data between the 30th generation and the 

200th generation.  Figure 2 illustrates the dsum values 

of different pairs of evaporation constants when the 

optimal goal moves randomly in the environment. 

From the graphs, we can conclude that: the optimal 

value of the personal fitness value evaporation 

constant Tp ranges between exp(-0.6) and exp(-0.8).

The optimal value of personal fitness value 

evaporation constant Tg ranges between exp(-1) and 

exp(-1.3).

5. Discussion and Conclusion 

Most papers reporting applications of optimization 

algorithms only discuss the scenario of a static 

environment [7, 10, 11, 12]. The performance 

evaluation of various approaches is mainly based on 

how fast an approach can find the optimal point in the 

benchmark problems. PSO has proven to be very 

effective in applications with static environment. 

However, in the real world, a frequently changing 

solution space causes the optimal solutions to change 

over time. The optimal solution found at time T1 may 

no longer valid at time T2. When the problem space is 

dynamically changing, the goal of optimization is not 

only to acquire the optimal solution but also to track 

their progression through the solution space as closely 

as possible. The traditional PSO has a difficulty to 

track the solutions. The reason is that PSO lacks a 

mechanism to update each particle’s knowledge 

obtained from the environment. That will induce a bias 

toward searching the region that once held the 

optimum; however, this region may not contain the 

more recent goal.  

In this paper, we present a new approach, TDPSO, 

a modified PSO, for tracking the optimization solution 

in a dynamically changing environment. Unlike other 

modified PSO for the dynamical environment, which 

needs one or more sentry particles to control other 

particles’ action, each particle in TDPSO individually 

updates its knowledge based on the local environment 

status that the particle perceived. Furthermore, all 

particles in the system are homogenous.  

(a)

(b)

(c)

Figure 2 Tracking performance comparisons 
of different pair of evaporation constant. (a) 
Offset moving speed = 0.1 * max; (b) Offset 
moving speed = 0.2 * max; (c) Offset moving 
speed = 0.4 * max 
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Each particle’s memory has an evaporation 

constant to control the rate of the knowledge 

evaporation (decay). The updating frequency of the 

particle’s memory is determined by the knowledge 

evaporation rate and the current fitness value the 

particle perceived from the point it located. Each 

particle in the system may update its memory in 

different generations. 

The simulation experiments indicate that TDPSO 

can efficiently track the movement of an optimal 

solution in a dynamically changing environment, while 

the traditional PSO failed. Because each particle 

updates its memory only based on its perception and 

the knowledge evaporation rate, the system can avoid 

losing tracking of the optimal solution as happened in 

other modified PSO approaches that are based on 

resetting the memory periodically.  

We also illustrated the impact of different 

evaporation constant parameters on the performance of 

tracking the dynamically changed optimal solution in 

TDPSO. In the simulation where the optimal solution 

moves at varying velocities, TDPSO would have a 

better performance if the evaporation constant of the 

personal best value and global best value are set in the 

range of (exp(-0.6), exp(-0.8)) and (exp(-1), exp(-1.3),

separately. An alternative solution to the fixed 

evaporation rate is to use reinforce learning. If each 

particle can implement the reinforcement mechanism 

for dynamically adjusting the best fitness value’s 

evaporation rate, the entire system may have better 

performance than setting a fixed evaporation rate for 

all particles. However, that will increase the design 

complexity of each particle. 
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