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Abstract
Collective actions that can affect government management and public security (e.g., mass
demonstrations), usually undergo long term development and originate from small and uncer-
tain social media activities. Thus, researchers try to identify a collective action from various
aspects such as changes in communication patterns, emerging keywords, and social emotions.
Many studies aim to predict whether regular social media activities can evolve into collective
actions, but the accuracy of these predictions is far from desirable. To address such a problem,
we propose a framework named PFDNN which can predict the occurrence probability of
collective actions every single day in the next month, so as to provide a reference for early
decision-making. The framework consists of two parts: collective emotional contagion predic-
tion and deep neural network with fully-connected layers (DNN) prediction. First, we imple-
ment the emotional contagion prediction based on species competition model to forecast user’s
emotional state. Second, we model the DNN prediction as a binary classification problem that
can be implemented using a DNN discriminator based on emotional contagion prediction. The
DNN discriminator considers early premonitions based on the number of tweets, the embedded
emotions and the number of violence-related words in the tweets during a specific timeframe,
and automatically labels the early premonitions according to the number of reports published in
the mainstream media. For evaluation purpose, we analyze the topics related to the “Arab
Spring” from over 300,000 social media entries using TensorFlow. The results demonstrate that
our prediction framework performs better than other representative methods.

Keywords Collective action . Emotional prediction . Automatic label . Deep neural network .

Early premonitions

1 Introduction

A social media is composed of actors (e.g., individuals or organizations), dyadic ties, and
social interactions among actors [1–6]. The development of information technologies and
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the Internet has widely boosted the use of social media or social network [7–10].
According to an eMarketer report, there are 1.82 billion worldwide users of social media
tools such as Facebook Messenger and WeChat by 2017, with an average growth rate of
15.5% per year [11]. Furthermore, social media plays an important role in our daily life
for information dissemination, and it makes much more convenient for information
exchange among actors including ordinary people, businesses, and activists. However,
social media can also produce negative effects to the society. In some cases, it may
become the source for collective actions such as terrorism and social uprising including
the notorious “Arab Spring” as an example of the latter [12]. Collective actions,
especially those during social conflicts, might severely affect economic development,
social order, and public safety. It is usually organized by a group of people aiming to
enhance their social status and achieve a common objective [13]. Social media provides a
channel that allows those people to spread messages for collective actions. For instance,
in 2011, the massive collective action called “Occupy Wall Street” started in New York.
Within a month, its scale jumped from tens of local people to tens of thousands of people
from over 950 cities in North America, Asia, Europe, and Oceania. This event demon-
strated that social media can provide a much faster means to disseminate information
than traditional media. In fact, the hashtag “#OccupyWallStreet” appeared on Twitter
only one night before the uprising on September 16th, 2011. Afterwards, during the first
two weeks of this collective action, more than 10,000 videos on this topic were uploaded
to YouTube, which makes it the biggest video sharing event related to a single activity in
the world [9–14]. Qualitative analyses have revealed that more than 75% of the protests
are planned, organized, and announced in advance, and individuals are very likely to
express themselves about these topics on social media [15–17]. Therefore, predicting the
occurrence of collective actions by analyzing entries on social media is possible and of
great significance.

Collective actions usually begin a long time before the occurrence of major events,
and some early premonitions can distinguish them from regular activities. For this study,
we consider three features to describe early premonitions related to a topic: the numbers
of tweets, the number of violence-related words, and the negative emotion embedded in
the tweets. Apparently, regular events about social problems can evolve into a collective
action if they attract the attention from the public and the number of tweets can represent
the most intuitive parameter to measure the public’s attention. Meanwhile, violence-
related words are more frequently used in the context of a collective action than in
regular social media activities. In addition, we employ negative emotion as a supporting
feature for our analysis when there are no sufficient violence-related words. If the future
emotion were to be positive, we would conclude that the regular activity will not evolve
into a collective action. At an early stage, there might be only a slight difference between
a potential collective action and a regular social activity. To distinguish the prelude of a
collective action (quantified by the features of related tweets) from a regular social
activity, we analyze the combination of features during a timeframe to generate what
we called early premonitions. By using early premonitions, we can predict whether a
regular social activity can evolve into a collective action and estimate its date of
occurrence. Implemented using a deep neural network (DNN) [18–21], we model the
prediction framework as a binary classification problem where regular activities and
collective actions are the two classes. The framework retrieves early premonitions from
social media data and uses mainstream media data to verify the occurrence of collective
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actions. Specifically, we use mainstream media data to label early premonitions during
the training process of the DNN.

The main contributions of this study are summarized as follows:

1) Prediction framework. We propose a framework to predict the occurrence and the date for
collective actions based on social and mainstream media data.

2) Discriminator. We model the prediction of collective actions as a binary classification
problem and solve with a DNN discriminator. The training data are automatically labeled
based on the number of reports published in the mainstream media.

3) Early premonitions. We consider three features of tweets during a timeframe. These
features formalize and quantify the early premonitions for collective actions which are
used as the inputs for the DNN training set.

4) Emotional contagion prediction. We proposes a prediction model based on the species
competition model and the epidemic model that can predict collective emotional conta-
gion for the dynamic development of a specific topic event before the decay period on
social media.

The remainder of this paper is organized as follows. Section 2 overviews the framework and
proposes the assumptions used in this study. Section 3 describes the collective emotional
contagion and species competition model. Section 4 describes the early premonitions and
automatic labeling for DNN prediction. Section 5 presents the technical details of DNN
prediction. Section 6 demonstrates the performance evaluation results of the prediction
framework. Section 7 presents the related work. Finally, Section 8 concludes this paper.

2 Framework overview and assumptions

The overview of the framework is shown in Figure 1 and with more details presented in
Figure 4. The framework mainly consists of two steps: if it predicts positive emotion in the
future, we would consider that the regular social media activity will not evolve into a collective

Figure 1 Framework Overview
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action; if it predicts negative emotion in the future, we would use the DNN (Deep Neural
Network with fully-connected layers) prediction to forecast the occurrence probability of the
regular social media activity evolving into a collective action.

Here, we present some assumptions used in this paper:

1. The total number of users on the social media remains at a constant value N.
2. There are four groups of users on the social media: users who hold a positive emotion

(Group Ip), the users who hold a negative emotion (Group In), the users who were
members of Ip or In in the past (Group Ir), but no longer pay attention to the event, and
the users who haven’t been susceptible to emotional contagion related to the relevant
event (Group Is). The research also assumes that Ipn = Ip∪In. At the initial stage we just
focus on three groups: Ip, In, Is. The number of users in Ip, In, Ir, Is at time t are denoted as
xp(t),xn(t),s(t),r(t) respectively.

3. λi(i = 1,2) represents the growth rate of the users’ followers who start to discuss the
specific topic event in group Ip or In

4. The immunization proportion is denoted as u and is considered to be a constant. Several users
in Ipn may become members of Ir at every time step and this proportion is denoted as u.

5. Once the users are aware of the relevant event under study, they can just keep one certain
emotion, either positive or negative.

6. There are interaction effects between Ip and In during the process of information
dissemination.

3 Collective emotional contagion

The Collective Emotional Contagion Model (CECM) focuses on predicting the future emotion
of the regular social media activities. The whole scenario of collective emotional contagion is
illustrated in Figure 2. We assume there are two kinds of collective emotions: positive and
negative. The prediction model for collective emotional contagion comprises two stages. In the
first phase, some messages are propagated to a few opinion leaders who have many followers
and can propagate message widely and rapidly on social media. Theses opinion leaders
express their opinions and several followers share these messages. Because of the influence
of the opinion leaders, the messages can be spread quickly and discussed intensively among
their followers on social media. However, most followers may not understand or know the
facts of the messages clearly during the initial period, they are largely influenced by the
opinion leaders’ opinions and emotions. After some time of information dissemination, users
on the social media are evolved into three groups, Ip, In and Is, at time point t1, as shown in
Figure 2. The followers’ emotion could now be either positive or negative, even though they
may still not know or understand the messages. In this phase, the scales of Ip and In gradually
increases, while Is is observed to be diminishing.

In the second phase, a new group Ir appears and increases gradually along the timeline of
the message. It means that some users in Ip or In become members of Ir. The information
dissemination of the users’ emotions can is like the spread of an epidemic. The users in the
group Ir are the immune individuals and users in Ip or In are patients. There are mutual
transformations and exchanges within the four groups. For example, some followers in Ip and
In can transfer into members in Ir, and some followers in Is can transfer into members in Ip or In.
Similarly, with the development of the relevant event, transformations and exchanges among
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the four groups will continue until the event ended. Another important reason why this study
divides the prediction framework into two phases is that sometimes new facts may be unfolded
during the development of the specific event, which may affect the emotional contagion.

To predict the future emotional state, CECM is proposed in this paper based on the species
competition [22–26]. To apply the model to predict collective emotion, the competition
relation is represented by the influence between the two groups, Ip and In, as an analogy to
two species in the species competition model. In addition, the users in Is are described by using
an analogy to the living resource in the species competition model explained as follows.

3.1 Species competition model

If there are two or more kinds of species in nature, there may be mutual competition,
interdependence or predator-prey relations among them [22–26]. This section focuses on the
competition relation. If the resources that support their lives are limited, the species may
compete with each other [27–30]. Eventually, weaker species may die out and the number of
stronger species will live. Here, the species competition model is formally presented.

Firstly, let us analyze a situation in which there is no competition among species. If
two kinds of species A and B live in their independent habitats, the evolution of the
number of the species follows logistic distribution [28]. The number of species A and B
are denoted as x1(t), x2(t) respectively at a point of time t. The initial growth rates are r1
and r2 respectively, while N1 and N2 are the maximum number of the species that their
respective habitats can support. As increase in the number of species A may lead to the
decline of the growth rate. This relation is described with a linear function r(x1) = r1-s*x1
(r1 > 0, s > 0) where r1 (N1) = 0, s = r1/N1. s is used to describe the decay rate of the

Figure 2 Overview of scenario for information dissemination on social media
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growth rate r(x1). In this paper, we build an ordinary differential equation for the growth
rate as in Eq. (1).

dx1
dt

¼ r x1ð Þ*x1
dx1
dt

¼ r1−s*x1ð Þ*x1
dx1
dt

¼¼ r1*x1* 1−ð Þ; x1 0ð Þ ¼ x10

ð1Þ

where r1x1 reflects the growth trend of the number and (1-x1/N1) reflects the block effect
of lacking resource.

Similarly, the ordinary differential equation of x2 for species B is

dx2
dt

¼ r2*x2* 1−ð Þ; x2 0ð Þ ¼ x20 ð2Þ

Furthermore, we investigate the competition relation in the same habitat where A and B are
competing for the same resources. To represent the competition from B to A, (1-x1/N1) is
modified to (1-x1/N1-σ1x2/N2) so as to include the fact that an individual B can consume
σ1times the number of resources than an individual A. Thus, the ordinary differential equation
of x1 is shown in Formula (3)

dx1
dt

¼ r1*x1* 1−
x1
N 1

−σ1
x2
N 2

� �
; x1 0ð Þ ¼ x10 ð3Þ

Similarly, B also affects the increase of A and the corresponding ordinary differential equation
is depicted in Formula (4)

dx2
dt

¼ r2*x2* 1−σ2
x1
N 1

−
x2
N 2

� �
; x2 0ð Þ ¼ x20 ð4Þ

where σ2 denotes that an individual A can consume σ2 times living resources than an individual
B.

In species competition model, σ1 and σ2 are the two critical variables that represent the
competitiveness in resources. If σ1>1, the competitiveness of B is higher than that of A, vice
versa when σ2 >1.

3.1.1 Collective emotional contagion model

The study in [31] found that the collective opinion of the steady state may deviate to the
positive or negative direction because of the initial bias of the leaders’ opinions. Meanwhile,
opinion leaders usually have many followers on social media, which may affect the collective
opinion in the process of information dissemination. However, with the wide spread of
information, the opinion leaders’ influence may decline because the public opinions may play
a more important role in emotional contagion.

The collective emotional contagion model considers both the positive and negative opin-
ions. During the dissemination process, the two opinions can affect each other. Using the
analogy of species in nature, the users who hold different opinions can be regarded as different
species. This research tries to simulate the emotional contagion process using the species
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competition model. In the model, the number of Ip, In, Ir, Is are ip(t), in(t), r(t) and s(t)
respectively at time t, and i(t) = ip(t) + in(t).

Note that here the precondition is that the event has happened for a period of time. To
simplify the description, the users who have discussed the specific event and held the positive
emotion are defined as group Ip0. The length of Ip0 is m, which means the number of the users
who have expressed their emotion. Similarly, the users who have held the negative emotion are
defined as group In0. For Ip, r1 that represents initial growth rates is substituted by λ1 quantized
with the users’ followers in group Ip0. Similarly, r2 is substituted by λ2 quantized with the users’
followers in group In0. Additionally, the parameter σ1 reflects the competitiveness of Inwhich is
measured with the users’ reliability in group In0. For example, on the social media, the followers
forward or like the posts only if they are more persuasive and credible, and the number of
followers who can affect the speed of information dissemination. So the reliability can be
quantized based on the reliability of users’ opinion measured by the number of forwards and
likes of the posts, and the number of followers for every user in In0. Thus, σ1 is defined as in
formula (5) where α and β represent the weights of the users’ reliability and the number of
followers respectively, ni,nfo represents the number of forwarded useri ‘s posts in In0, ni,nlike
represents the number of useri ‘s liked posts in In0, nj,pfo represents the number of forwarded
userj ‘s posts in Ip0, nj,plike represents the number of userj ‘s liked posts in Ip0, λi, nfan represents the
number of useris ‘s followers in In0, and λj, pfan represents the number of userj ‘s followers in Ip0.

σ1 ¼ α∑i ni;nfo þ ni;nlike
� �þ β∑iλi;nfan ð5Þ

Similarly,

σ2 ¼ α∑ j n j;pfo þ nj;plike
� �þ β∑ jλ j;pfan ð6Þ

3.2 The contagion process

With the development of the event, some users will no long care about the relevant messages,
and hence users in groups Ip and In may be transferred into Ir. That is, the proportion of each
emotional group that may be reduced is the immunization proportion u at each time step △t
according to the assumption 4. Thus, the emotional contagion process can be improved to the
Formula (7) based on Formula (2) and Formula (4).

dxp
dt

¼ λ1*xp* 1−
xp
N1

−σ1
xn
N2

−u
� �

dxn
dt

¼ λ2*xn* 1−
xn
N2

−σ2
xp
N1

−u
� �
xp; xn≥0

8>>>><
>>>>:

ð7Þ

Referring to the species competition model, if σ1>1, the ability of users in In to influence users
from Is who hold the positive opinion at first into In is higher than that of users in Ip. In such a
situation, the users in Ismay transfer to negative opinion. Similarly for the situation when σ2>1.

3.2.1 Analysis of stability

This section focuses on analyzing the stability of CECM which can predict the final stable
emotional state of information dissemination before the decay period. Stability can be
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described by the trends of xp,xn. However, the analytic equation of Formula (7) is very difficult
to be solved. Luckily, xp,xn at each time step can be estimated using the Runge-Kutta algorithm
which is used to solve ordinary differential equations based on the iterative algorithm.
Meanwhile, the last states of xp,xn can be described with equilibrium points. We set
f(xp,xn)≡dxp/dt, g(xp,xn)≡dxn/dt, and f(xp,xn) = 0,g(xp,xn) = 0 to get equilibrium points.

f xp; xn
� �

≡λ1*xp* 1−u−
xp
N1

−σ1
xn
N2

� �
¼ 0

g xp; xn
� �

≡λ2*xn* 1−u−
xn
N2

−σ2
xp
N 1

� �
¼ 0

xp; xn≥0

8>>>><
>>>>:

ð8Þ

After solving the equations, we get four equilibrium points, P1(N1,0), P2(N2,0),P3(
N1 1−σ1ð Þ 1−uð Þ

1−σ1σ2
; N2 1−σ2ð Þ 1−uð Þ

1−σ1σ2
), P4(0,0). Clearly, we can see that the final stable values of xp,xn only

depend on the values of u, N1, N2, σ1and σ2.
This research analyzes the stability of the equilibrium points based on the stability theory of

ordinary differential equations [24]. According to the method that justifies the stability, we give
the coefficient matrix (A) of formula (8) and two indicators (p,q) that are used to justify the
stability of the equilibrium points.

A ¼ f xp f xn
gxp gxn

� �

¼
λ1 1−

2xp
N1

−
σ1xn
N2

−u
� �

−λ1pσ1xp
N 2

−λ2pσ2xn
N1

λ2 1−
2xn
N 2

−
σ2xp
N 1

−u
� �

2
664

3
775

p ¼ − f xp þ gxn

� 	



pi
; i ¼ 1; 2; 3; 4

q ¼ detAjpi ; i ¼ 1; 2; 3; 4

If the equilibrium points are stable, p > 0 and q > 0 according to stability theory. The require-
ments are described in Table 1. Additionally, our experiments revealed that λ1 and λ2 should be
larger than a threshold depending on u, σ1and σ2.

Actually, the emotional trend in the stable state, which is affected by p and q, can be analyzed
based on the equilibrium points as shown in Table 1. For the equilibrium points P1 and P2, the
emotional trend depends on the maximum. For P3, the emotional trend depends on N1(1-σ1) (1
− u) and N2(1 − σ2)(1 − u). Thus, the proportion of the users with positive emotion and the
proportion of the users with negative emotion are calculated using Formula (9) as follows:

PIp ¼
N 1 1−σ1ð Þ 1−uð Þ

1−σ1σ2

N1 1−σ1ð Þ 1−uð Þ
1−σ1σ2

þ N2 1−σ2ð Þ 1−uð Þ
1−σ1σ2

¼ N1 1−σ1ð Þ
N 1 1−σ1ð Þ þ N2 1−σ2ð Þ PIn ¼ 1−PIp

¼ N2 1−σ2ð Þ
N 1 1−σ1ð Þ þ N2 1−σ2ð Þ ð9Þ
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4 Early premonitions and automatic labeling

In this section, we describe the definition of early premonitions for collective actions and their
automatic labeling which is the preprocessing for DNN prediction as will be introduced in section 5.

We define early premonitions based on the combination of three features observed over a
period of time, including: signal S, violence-related words V, and emotion E. These features are
extracted from social media, and early premonitions are represented as a time series, namely
(Si, Vi, Ei) represents the early premonition on day i. Each feature is defined as follows.

Signal S We define the signal as the number of tweets about a specific topic during a day
which aims to reflect the attention from the public. In addition, we normalized Si using (10) to
obtain S’i = f(Si).

f xð Þ ¼ x−xmin
xmax−xmin

ð10Þ

Violence-related words V Expressions such as “protest,” “war crimes,” “demonstration
against,” and “parade” suggest that a related event might result in a collective action involving
some type of violence [32]. We define Vi as the average number of violence-related words in all
the tweets about a specific topic during a day. To identify these words, we build a violence-
related lexicon based onword embedding. First, we select a few violence-related words, such as
protest, bomb, and march. Then, we use a skip-gram model to train the word embedding for the
words in a corpus. We compute the cosine similarity given by Formula (12) between the words
in the corpus and each of the selected violence-related words for word embedding. Next, we add
the K candidate violence-related words most similar to each selected word to the lexicon, and
remove the duplicates. To improve the lexicon quality, the candidate violence-related words are
confirmed artificially by analyzing whether they have been frequently used in collective
actions. Finally, the average number of violence-related words can be obtained by searching
in tweets during a day. We also normalized Vi using Formula (11). The process for searching
violence-related words in a tweet is described in Process 1.

Process 1. Lexicon and number of violence-related words per tweet
Input: Predefined violence-related words
Output: Violence-related lexicon W and number of violence-related words v per tweet

1. Use skip-gram model to train word embedding for each word in the corpus
2. For each word wi in the corpus

3. compute the cosine similarity between wi and each predefined violence-related word with word embedding
4. For each predefined violence-related word
5. select the K most similar candidate words as synonyms based on similarity
6. remove duplicates among synonyms
7. verify the obtained words artificially and generate lexicon W
8. For each tweet in the dataset
9. obtain the number of violence-related words based on lexicon W
10. Return W and v

Table 1 Requirements of stability for the equilibrium points

equilibrium points p q Requirements of stability

P1(N1,0) λ1(u + 1)- λ2p(1-σ2-u) −λ1λ2∗ (1-σ2- u-u2) σ1<1-u, σ2>1-u
P2(0, N2) λ2(u + 1)- λ1p(1-σ1-u) −λ1λ2∗ (1-σ1- u-u2) σ1>1-u, σ2<1-u
P3(

N1 1−σ1ð Þ 1−uð Þ
1−σ1σ2

; N2 1−σ2ð Þ 1−uð Þ
1−σ1σ2

) 1−uð Þ λ1 1−σ1ð Þþλ2p 1−σ2ð Þð Þ
1−σ1σ2

λ1λ2 1−σ1ð Þ 1−σ2ð Þ 1−uð Þ2
1−σ1σ2

σ1<1-u, σ2<1-u

P4(0,0) −(λ1 + λ2)(1 − u) λ1λ2(1 − u)2 No stable
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V
0
i ¼ f

∑n
j¼1vij
ni

� �
¼ ∑n

j¼1vij−vmin
ni* vmax−vminð Þ ð11Þ

where vij denotes the average number of violence-related words for the j-th tweet on the i-th
day, ∑n

j¼1vij denotes the total number of these words on the i-th day, ni denotes the number of

tweets related to a topic on the i-th day, vmin denotes the minimum number of violence-related
words found in tweets along the days, and vmax denotes its maximum.

Cosine similarity ¼ ∑m
k¼1x1k*x2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑m
k¼1x1k2

p * ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

k¼1x2k2
p ð12Þ

where x1 and x2 denote vectors with elements x1k and x2k, respectively, and Cosine_similarity is
the cosine similarity between the two vectors.

Emotion E The emotion reflects the emotional content of tweets. We only consider negative
emotion determined by analyzing the content of tweets using the tool TextBlob. This tool
returns emotion values E ∈ [−1, 1]where negative emotions belong to (−1, 0) and |E| represents
the level of the emotion. For a given day i, we define emotion Ei as the average emotion of the
tweets related to a topic. We find that collective actions show a tendency towards negative
emotion. To obtain the normalized feature, we apply Formula (10) to the corresponding
arguments as defined in Formula (13). This way, negative emotion is mapped to the interval
(0.5,1] and positive emotion to the interval [0,0.5). Furthermore, the most positive emotion
maps to 0, and the most negative emotion maps to 1.

E
0
i ¼ f −

∑eij
ni

� �
¼

−
∑eij
ni

−emin

emax−emin
ð13Þ

where ni denotes the number of the tweets related to a topic on the i-th day, eij denotes the

emotion of the j-th tweet on the i-th day, ∑eijni
denotes the average emotion of tweets on the i-th

day, emin denotes the minimum average emotion of tweets along the days, and emax denotes its
maximum counterpart.

Determining early premonitions and automatic labeling The features outlined above aim
to establish the connection between early premonitions Xi (correspond to the inputs of the
framework extracted from social media) and future condition Yj (correspond to the outputs of
the framework extracted from mainstream media and is automatically labeled). In our frame-
work as shown in Figure 3, samples in a training set associated with early premonitions are
labeled either with Yj = 1 or 0. To obtain samples for the training set, we first confirm the value
of Yj and then build the corresponding early premonitions. Early premonitions are based on the
features of tweets during k days, namely from day j–k–m+ 1 to j–m, if the framework aims at
predicting whether the collective action will occur or not m days later, i.e., on day j. For
instance, if m = 1, the framework predicts whether the collective action will occur tomorrow.

To automatically label the early premonitions, we consider the occurrence date (i.e., day j)
of the collective action based on the number of relevant news published on mainstream media,
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and denote the corresponding signal as Sm,j on day j. In [32], it is proposed a threshold θ′ =
2.875 based on the number of relevant reports, where θ = g(Sm,j) > θ′ indicates the occurrence
of a collective action (i.e., Yj = 1), and g denotes a transformation function given by

θ ¼ g Sm; j

� � ¼ 1

3
∑ jþ1

t¼ j−1
Sm;t

S
0

m; j

S
0

m; j ¼
1

90
∑i−1

j¼i−90Sm;i

ð14Þ

where S
0

m; j represents the average times a topic has been mentioned in the last three months to

stabilize the value.
For regular activity (i.e., Yj = 0), we also obtain the corresponding early premonitions.

Hence, for regular activity or a collective action to occur on day j, we formalize the
corresponding early premonitions Xj considering signal S, violence-related words V, and
emotion E as follows:

Figure 3 Prediction mechanism based on early premonitions of collective actions and automatic labeling from
mainstream media
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X j ¼ X
0
j−k−mþ1;X

0
j−k−mþ2;⋯X

0
j−m

� 	
; j ¼ mþ 1;mþ 2;…; n

¼ S j−k−mþ1;V j−k−mþ1;E j−mþ1

� �
; S j−k−mþ2;V j−k−mþ2;E j−k−mþ2

� �
;⋯; S j−m;V j−m;E j−m

� �� 

ð15Þ

where X
0
j−k−mþ1 denotes the transpose of matrix of Xj–k–m + 1 and X

0
j−k−mþ1 = (Sj-k-m+ 1,Vj-k-m+

1,Ej-m+ 1)∈R1*3 are the three features on day j– m.

5 DNN prediction

We implement the prediction framework using a DNN, and collect a large dataset of tweets by
dates. The framework incorporates four stages: 1) Build the training set: extract the number of
news published on mainstream media to obtain θ from Formula (14)(step①②in Figure 4);
automatically label the training set by transforming θ to label Y = 1 or 0; extract the three
features from social media(tweets) in the dataset to build the corresponding early premonitions
(step③④in Figure 4); 2) Use Collective Emotional Contagion Model (CECM) to predict the
future emotion of the regular social media activities (step⑤in Figure 4); 3) If the future

Figure 4 Prediction framework for collective actions
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emotion is negative, train and test the DNN discriminator with early premonitions Xj as inputs
and labels Yj as outputs, namely pairs of samples (Xj, Yj), j =m + 1, m + 2, …, n are used to
train the DNN (step⑥in Figure 4); 4) Predict the occurrence probability of regular social
media activity evolving into a collective action for a specific social event (step⑦in Figure 4).
The DNN discriminator for the prediction framework is depicted in Figure 4.

5.1 DNN discriminator

We employ the DNN discriminator to determine whether a regular social media activity can
evolve into a collective action on day j which is m days after our analysis. The main idea
depends on analyzing early premonitions during the k days before the day of the prediction,
namely on day j–m, and their relation to the occurrence probability of a collective action on
day j by analyzing the relation between the inputs (i.e., early premonitions) and the outputs
(i.e., whether a collective action occurs). As mentioned above, we train the DNN discriminator
with samples (Xj, Yj), j =m + 1, m + 2, …, n.

For the training process, the inputs and outputs are Xj and Yj, respectively. The predicted

value for Yj is denoted as Y j. The details of the discriminator structure are described as follows.

1) The activation function for the hidden layers is tanh(z) as defined in Formula (16). Our
experiments show that it performs better than other activation functions.

tanh zð Þ ¼ sinh zð Þ
cosh zð Þ ¼

ez−e−z

ezþe−z
ð16Þ

The output for the hidden layers is defined as al + 1 based on the activation function:

alþ1 ¼ tanh zl
� �

¼ tanh wl*al
� �þ bl
� �

¼ e wl*alð Þþbl−e− wl*alð Þþbl

e wl*alð Þþblþe− wl*alð Þþbl

ð17Þ

where wl ∈ Rk ∗m is the weight vector of the l-th layer, al ∈ Rm ∗ n represents the nodes of the l-th
layer, bl ∈ R1 ∗ n is the bias vector of the l-th layer, (wl∗al) + bl denotes the inputs of the (l + 1)-
th layer, and al + 1 ∈ Rk ∗ n represents the outputs of the (l + 1)-th layer.

2) Given that it is a probability classification problem, the outputs for the final layer, given
by a score vector per category, are determined by Formula (18) based on the activation

function. Namely that Ycan show the occurrence probability of collective actions. The
category with the highest score is regarded as the prediction.

Y ¼ f zð Þ ¼ e wl*alð Þþbl

∑2
l¼1e wl*alð Þþbl

ð18Þ

where Y∈R1*2 is the l-th node of the output layer which ranges from 0 to 1 and represents the
probability of the sample belonging to one of the 2 classes.
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3) The optimization objective of the DNN is based on the mean squared error and L2
regularization to prevent overfitting, given by Formula (19)

C ¼ 1

n
∑n

k¼1∑
2
i¼1 Yk;i−Yk;i

� 	2
þ λ*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i∑ jwij

2
q

ð19Þ

Where n represents the number of the samples, Yk, i ∈ {0, 1} represents the label for the sample,

Yk;i represents the prediction probability of the k-th sample belonging to the i-th class, wij

represents the weight of the j-th node at the i-th layer of the network, and λ represents the
weight for the L2 regularization.

6 Experiments and analysis

As the prediction framework mainly consists of two parts: the collective emotional contagion
based on species competition model and the DNN prediction process, we evaluate the perfor-
mances of the two parts respectively. First, we evaluate the performance of CECM. The
experiments mainly evaluate the performance by comparing it with the recent work in [31]
and adjusting four parameters of the initial emotional state xp0, xn0 λ1, σ1 andσ2. Afterwards, we
conduct the experiment to evaluate the performance of the prediction framework (PFDNN)
which predicts the potential collective action based on deep neural network. The performance is
measured with the precision, recall and F-measure. First, we conduct experiments to optimize
the PFDNN by tweaking the parameters of the DNN. Second, to demonstrate the better
performance of PFDNN, we compare it with the method called RF as proposed in [32] and
the method called PFS as proposed in [15], all implemented by TensorFlow. Additionally, we
analyze the performance of PFDNN in prediction of whether the potential collective action will
occur every single day in the next 22 days, in order to compare with the performance of RF.

6.1 Datasets

To evaluate the performance of the two parts of the framework, we use two different datasets.
Actually, the second part (DNN model) is the most important one and we need to compare the
performance of the DNNmodel with other relevant research which uses the “Arab Spring” dataset.
However, the “Arab Spring” dataset doesn’t contain some key terms of the first part, such as the
number of forwarded user ‘s posts, the number of user ‘s liked posts and the number of followers.
Therefore, we have used two different datasets for evaluation purpose. For evaluating CECM, we
implement experiments on six datasets about social events which are crawled from the Sina
Microblog with the relation between users and keywords, including (1) Lasa, beating, smashing
and looting; (2) HuanYu,murder (a homicide case in 2016); (3) Fujian Bi (a TV host in CCTV); (4)
Increase retirement age; (5) THAAD, Lotte; (6) online star, papi (the nickname of a female Internet
celebrity). The six datasets are named as Dataseti (i= 1,2,3,4,5,6) respectively. For each dataset, we
approximately got 15,000 posts. After crawling the data, we can acquire the number of forwards and
likes of all the posts for every user. As the list of key words of each social event we set is simple,
some posts would be not very correlational. Taking into account the timeliness of news, the old posts
are filtered based on the timestamp. For each record of the datasets there are 8 data items including:
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user’s ID, user’s name, member or not, authentication or not, timestamp, forwarding times,
commented times and liked times.

For evaluating PFDNN, the experiments are carried out based on 300,000 different open
web content in Twitter collected by Recorded Future (www.recordedfuture.com). The dataset
involves mass protests from 18 countries (for example Afghanistan, India, Egypt and Italy)
which are about Arab Spring starting from Tunisia. As outlined above, we extract three
features: the signal, violence-related words and emotion, from the tweets over a period of
time. Then, we count the number of news published on mainstream media and make
transformations to obtain Label Y = 0 or 1. Finally, we build the corresponding early premo-
nitions using the features during k days, namely setting k = 10 for the certain Y. Thus, the inputs
and outputs are produced to train the DNN.

6.2 Analysis of CECM

In this section we analyze the effect of the parameters including xp0, xn0, λi, σ1 and σ2 on the
performance of CECM. Specifically: (1) we analyze how fast CECM can achieve the stable
state during the dissemination process, which can be measured by the number of iterations (k)
to achieve the stable solutions solved by the Runge-Kutta algorithm; (2) we try to verify the
effect on theoretical equilibrium points in Table 1. In the experiment, the weights, α and β, are
all set to be 0.5. That is, we believe the users’ reliability and the development trend of the event
have the same importance on the competitiveness. To conduct the experiments, we crawl all
the 8.5521*107 followers of 500 authenticated users from 50 industries and the average
number is 1.7104*105. Hence, λi was approximately set to be 1.7104*105 when we analyze
other parameters in the experiments.

First, the experiment analyzes the effect of λ1 and λ2 on the number of iterations and the
final state. λ1 and λ2 are values from 100 to 1*106 and N1 = 1.6*105, N2 = 1*105, u = 0.03,
σ1 = 0.1,σ2 = 0.8, xp0 = 0.1*105, xn0 = 0.15*105. The results are presented in Table 2 and we
can achieve several conclusions as follows.

1) For the number of iterations, it increases gradually with the growth of users’ followers in
group Ip while the number followers remaining unchanged in group In as shown in
Experiment I and II in Table 2.

2) When λ1 is set equal to λ2, the number of iterations remains the same when λi is larger
than a certain threshold value as shown in Experiment III in Table 2.

3) For the final states of xp and xn, there are extreme cases that xp and xn are very close to 0
and N2 respectively when there is a big difference between λ1 and λ2 as shown in
Experiment I in Table 2.

4) When λ1 and λ2 are equal and both larger than a certain threshold value, xp and xn finally
approach to 1.5651*105 and 0.2175*105 respectively as shown in Experiment II and III in
Table 2. But the threshold was not a fixed value and it depends on other parameters. Based
on the experiments, the threshold is approximately 3000. We can see that λi has no effect
on the number of iterations and the final state when λi is larger than the threshold value.

Next, the experiments evaluate the effect of σ1 and σ2 on the final values of xp and xn.
Section VI has analyzed the theoretical effect of σi on the equilibrium points given the
requirements of stability in Table 1. Hence in our experiments, we just need to choose one
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pair of σ1 and σ2 for each requirement to analyze the variation. Based on Table 1, we consider
three situations specifically: ①0 < σ1 < 1 − u < σ2; ② σ1 > 1 − u > σ2 > 0; ③0 < σ1, σ2 < 1 − u
to analyze the variation of xp and xn. Compared with the situation where σ1 = σ2 = 0, the result
indicates there is no interaction between group Ip and In. Note that here other parameters
remain unchanged.

For situation ①, the experimental result is shown in Figure 5 where the solid line and the
dotted line represent the variations of xp and xn respectively when σ1 = σ2 = 0, and the line
marked with “*” and “O” represent the situation①. It shows that (xp, xn) is close to (N1, 0). The
average accuracy is 97.172% compared with the theoretical equilibrium point (N1, 0).

For situation②, the experimental result is shown in Figure 6. It shows that (xp, xn) is close to (0,
N2). The average accuracy is 99.846% compared with the theoretical equilibrium point(0, N2).

Table 2 The effect of λi on the iteration and final state in different case

Experiment λ1 λ2 Iteration xp(*105) xn(*105)

I 100 100 50 0.345*10−5 0.593*10−5

100 1000 50 0.002*10−3 0.175*10−3

100 10,000 50 0.00008 0.9989
100 1*105 160 0.00004 0.9991
100 1*106 259 0.00002 0.9999

II 10,000 10,000 50 1.5651 0.2175
10,000 1*105 117 1.5649 0.2175
10,000 1*106 761 1.5607 0.2195

III 2000 2000 50 0.345*10−2 0.593*10−2

2500 2500 50 0.3452 0.5938
3000 3000 72 1.5651 0.2175
5000 5000 72 1.5651 0.2175
10,000 10,000 72 1.5651 0.2175
1*105 1*105 72 1.5651 0.2175
1*106 1*106 72 1.5651 0.2175

Figure 5 The effect of the situation ① on the xp and xn
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For situation ③, the experimental result is shown in Figure 7. It shows that (xp, xn) is close

to P3(
N1 1−σ1ð Þ 1−uð Þ

1−σ1σ2
; N2 1−σ2ð Þ 1−uð Þ

1−σ1σ2
) = (0.533*105,0.833*105). The average accuracy is 99.846%

compared with the theoretical equilibrium point P3(0.533*105,0.833*105).
Finally, we try to verify whether the initial emotions can affect the final emotional state. The

initial emotions fall into two categories, xp0 > xn0 and xp0 < xn0. Meanwhile, N1 = 1.6*105, N2 =
1*105, λ1=3000, λ2=4000, u = 0.03, σ1 = 0.5, σ2 = 1.6. The experimental result is shown in
Table 3. We can see that no matter what the relation is between xp0 and xn0, the result is always
that xp is close to N1 and xn is close to 0. Therefore, the final emotion state is not relying on the
initial emotion.

In conclusion, if 0 < σ1 < 1 − u < σ2, (xp,xn) moves towards to P1(N1,0). If σ1 > 1 − u > σ2 >
0, (xp,xn) moves towards to P2(0,N2). If 1 − u > σ1, σ2 > 0, (xp,xn) moves towards to

P3(
N1 1−σ1ð Þ 1−uð Þ

1−σ1σ2
; N2 1−σ2ð Þ 1−uð Þ

1−σ1σ2
). And the other three parameters, viz. λ1, λ2 and u, can affect

the speed of reaching to the stable state when they are lower than a certain threshold. However,
there is no more effect when the values of these parameters exceed that threshold. Additionally,

Figure 6 The effect of the situation ② on the xp and xn

Figure 7 The effect of the situation ③ on the xp and xn
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it shows that the final emotional state does not depend on the initial emotion but significantly
related to users’ followers and the reliability of users’ opinion.

6.2.1 Comparison of CECM with COCF

To further evaluate the performance of CECM, we compare it with the representative COCF
model proposed in [31]. The proportions of the positive and negative posts each day on the
Chinese microblog are different, which can reflect users’ emotional state. We first obtain the
number of users in the two emotion groups and then get the proportions. The performance is
evaluated by the precision of the predicted proportions of the two emotions. COCF predicts the
tendency and final emotional state of collective opinion by giving each user a conviction
which measures the ability to insist on his/her opinion. It presents an opinion formation model
via deduction, shown in Formula (15), in which users with high conviction are normally the
opinion leaders. Note that there is a similarity between the conviction in COCF and the
reliability measured by σ1,σ2 in CECM. Meanwhile, the result presented in [31] revealed that
the final emotional state might deviate to either the positive or negative direction because of
the initial bias of the leaders’ opinions. Os defined in Formula (20) reflects the probability of
the two emotions which is similar to the proportions of the two emotions in CECM.

Os ¼ r2 þ r
2r2−r þ 1

*
1

L
∑
L

i¼1
o

0
i s ¼ positive or negativeð Þ

r ¼ L
N

8>><
>>: ð20Þ

where N is the number of users and o
0
i is the opinion of the users whose conviction ranks at the

i-th position in the system.
Here, we mainly compare the accuracy of CECM with that of COCF by analyzing the

proportions of users who have either emotion in a stable state before the decay period. For
COCF, the opinion leaders are identified by the number of followers which could be extracted
from our real-world datasets. COCF depends on the first L leaders’ emotions which are based
on the ranking of the number of followers. In our experiment we set L =N/3 (N is the total
number of users in the dataset, and the same with CECM). Leaders’ emotions are reflected by
their posts which could be checked manually or using textblob in Python. For CECM, the final
state could be measured with equilibrium points, which has been proven to be more accurate in
the experiments above.

Table 3 The effect of initial emo-
tions on the final state xn0*105 xp0*105 xp*105 xn

0.15 0.1 1.6 0.00000057
0.35 0.3 1.6 0.00000031
0.15 0.2 1.6 0.00000095
0.45 0.4 1.6 0.00000014
0.57 0.5 1.6 0.00000005
0.25 0.5 1.6 0.00000021
0.35 0.5 1.6 0.00000011
0.45 0.6 1.6 0.00000023
0.57 0.6 1.6 0.00000004
0.57 0.7 1.6 0.00000005
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For the six datasets, the final states of CECM and COCE are acquired. The accuracy is
computed with Formula (21). As CECM depends on the current states, we chose different set of
Ip0 and In0 with them = L =N/3 (the same with COCF). In Formula (21), yp,m and yn,m represent
the real stable ratios of Ip and In respectively, and Ip0 and In0 are both equal to m. Correspond-
ingly, yp;m and yn;m are the predicted values. The results are shown in Table 4 and Table 5. We

can find that the accuracy of CECM is higher than that of COCF in Dataseti (i = 3,4,5,6) and the
average accuracy of CECM is also higher than that of COCF by 22.14%. Though the results in
Dataseti (i = 1,2) show COCF is better than CECM, the gap is very small. The reason may be
related to the characteristics of the datasets. So in general, we can conclude that the performance
of CECM is better than that of COCF. We speculate the reason is that before social media
becomes popular, COCF may have a better performance because the leaders’ opinions are
dominant and the information dissemination is not wide. However, with the rapid development
of social media and its popularity among people, information dissemination becomes much
wider so that much more people can discuss the event and make comments.

Accuracy ¼ 1−
jyp;m−yp;mj þ jyn;m−yn;mj

� 	
2

ð21Þ

6.3 Analysis of PFDNN

The discriminator of PFDNN depends on DNN. We first select the activation function and the
number of hidden layers based on the measurements of accuracy, precision, recall and F-
measure by implementing many experiments on the dataset. Next, we compare DNN with two
other research works on their average accuracy, precision, recall and F-measure. Finally, we
further compare the performance of PFDNNwith RF as proposed in [32] and PFS as proposed
in [15] by analyzing the prediction accuracy for each day in the next 22 days.

6.4 Tweaking the parameters

As the outputs of the DNN in this research include two categories (yi = 0 or 1), the output layer
used “softmax” function is a two dimension vector of scores, one for each category. Mean-
while, the weights of each layer of the neural networks are initialized depending on the normal
distribution and optimized with the Adam algorithm. For the DNN, the process of the
experiments mainly consists of two steps: 1) selecting the suitable activation function, 2)

Table 4 The experiments on six real datasets extracted from the Chinese microblog for CECM

Dataseti σ1 σ2 yp,m yn,m yp;m(CECM) yp;m(CECM)
Accuracy Average

Accuracy

1 1.1761*10−4 0.0733 0.4189 0.5811 0.5190 0.4810 0.8454 0.8667
2 0.2470 0.1751 0.6622 0.3378 0.4772 0.5228 0.8151
3 0.1383 0.3625 0.1757 0.8243 0.5748 0.4252 0.6009
4 0.1582 0.2420 0.5000 0.5000 0.5262 0.4738 0.9738
5 0.0544 0.0609 0.6622 0.3378 0.4983 0.4252 0.9932
6 0.0185 0.3702 0.5811 0.4189 0.6091 0.3909 0.9720
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determining the number of the hidden layers and the number of nodes in each hidden layer (the
node distribution).

For the activation functions, we consider six common functions (including relu, sigmoid, tanh,
softplus, elu and relu6) and analyze their corresponding precision, recall and F-measure. When
comparing their performance, the initial weights and the number of the layers are set as the same.We
also analyze the impact on the performance by changing the numbers of the layers.

To select the best activation function, all other conditions are kept unchanged. The average
results are shown in Table 6.

From Table 6, we can see that relu, softplus and elu function are the best choices in terms of
recall, and the tanh function is the best one in terms of precision and F-measure. As F-measure
is the comprehensive value of precision and recall, we regard tanh function as the best choice.

We also conduct experiments to analyze the performance of the DNN with different number
of hidden layers ranging from 3 to 10 while keeping other conditions unchanged. To analyze the
effect of the number of nodes, we increase the number of nodes gradually in a certain hidden
layer while keeping others unchanged. By analyzing the experimental results, we can see the
performance with 3 hidden layers is not desirable and it achieves the best performance when
with the combination of [200, 20, 18] where 18 is the number of nodes in the final hidden layer.
We adjust the number of nodes in each hidden layer, from 10 to 120 with an increment of 10.
Eventually by analyzing the average performances and standard deviations of the accuracy,
precision, recall and F-measure, we find that 9 hidden layers, namely 11 layers in total, might be
most appropriate and there is no apparent difference with different number of nodes in the same
hidden layers. The detailed experimental results are shown in Figures 8, 9, and 10.

In Figure 8, horizontal axis represented the total number of the hidden layers in the DNN.
The vertical axis represented the average performances (the accuracy, the precision, the recall
and the F-measure) when the DNN is structured with a certain number of hidden layers and the
number of nodes ranging from 10 to 120. The result reveals that the performance is not
desirable when the DNN is structured with 3, 4, or 5 hidden layers. The performance is
improved with the increasing number of the hidden layers. As F-measure is the comprehensive

Table 5 The experiments on six real datasets extracted from the Chinese microblog for COCF

Data seti yp,m yn,m yp;m(COCF) yp;m(COCF)
Accuracy Average

Accuracy

1 0.4189 0.5811 0.5555 0.4445 0.8634 0.7096
2 0.6622 0.3378 0.7897 0.2103 0.8724
3 0.1757 0.8243 0.8012 0.1988 0.3745
4 0.5000 0.5000 0.0237 0.9763 0.5237
5 0.6622 0.3378 0.2236 0.7764 0.8047
6 0.5811 0.4189 0.3998 0.6002 0.8187

Table 6 The average results of six
activation function in the DNN Activation function Precision Recall F-measure

Tanh 0.82 0.81 0.81
relu 0.5 1.0 0.67
Sigmoid 0.79 0.80 0.80
softplus 0.50 1.0 0.67
elu 0.50 1.0 0.67
Relu6 0.79 0.76 0.77
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value of precision and recall, the accuracy and F-measure are considered as the two major
evaluation metrics. Therefore, the DNN consisting of 9 hidden layers is regarded as the most
appropriate one because it has the best accuracy and F-measure.

To evaluate the impact of different number of nodes, we adjust the number of nodes from
10 to 120 by an increment of 10 in the penultimate hidden layer when adding a new hidden
layer, and keeping others unchanged. In the experiments, we obtain the four performance
metrics illustrated in Figure 9. The corresponding standard deviations [33] calculated using
Formula (22) which measure the discreteness of the datasets are illustrated in Figure 10.

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

i¼1
xi−μð Þ2

s
ð22Þ

where μ denotes the mean of the dataset with components xi and the number of the dataset is N.
Figure 9 shows the four performance metrics of the DNNwith 9 hidden layers, and the results

are mainly in the range from 0.8 to 0.95. Figure 10 shows the standard deviations of the four
performance metrics, and the values are small when the number of the hidden layers is ranging
from 6 to 10. Particularly, when the DNN was structured with 9 hidden layers, the standard
deviations of all four metrics are the smallest in our experiments. Based on Figures 9 and 10, we

Figure 8 The average performance of the DNN with different number of hidden layers

Figure 9 The performance with different number of nodes in the penultimate hidden layer in the DNN
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can see that the number of nodes has little effect on the performance of DNN in our experiments.
For the DNN consisting of 11 layers with the following node distribution: [30, 200, 20, 20, 50, 80,
900, 60, 30, 18, 2], it is most stable as the four standard deviations were all the smallest and all the
performance metrics are larger than 0.8.

To sum up, the relevant parameters of the DNNmodel were as follows: 1) The initial values
of weights were based on normal distribution and the biases are initialized with 0.01. 2) The
DNN model consisted of 11 layers with the following node distribution: [30, 200, 20, 20, 50,
80, 900, 60, 30, 18, 2]. 3) The activation function in each hidden layer used “tanh” function
and the output layer uses “softmax” function. 4) The optimization objective of the DNN was
based on the mean squared error and L2 regularization with the penalty term λ=0.001 the seen
in formula (19). 5) The optimization objective was optimized with the Adam algorithm.

6.5 Comparison with other methods

The research in [32] proposed RFwhich is based on random forest and defined the collective action
with two features: the number of tweets and the number of violence-related words. Additionally, RF
employs the features during the last ten days to build the feature vector. The research in [15]
proposed PFS which is a protest forecasting system that can identify what to look for using a
combination of key phrase, reason about location occurrences in extracted results using probabilistic
soft logic, and resolve future tense mentions using time normalization. The comparison depends on
the performance metric of recall rate that indicates the maximum ability of identifying the collective
actions. The experimental results are shown in Table 7. From the table, we can see that our PFDNN
is better than RF and PFS as the average precision and recall are all higher than others.

Meanwhile, RF can also predict the collective actions for every single day in the next
22 days. For comparison purpose, we also implement that for PFDNN. The experimental results
are shown in Figure 11. From the Figure, it shows that the performance of our research is better

Figure 10 The standard deviations of the four performance metrics with different number of nodes in the
penultimate hidden layer in the DNN

Table 7 The comparison between
PFDNN and RF, PFS method Average Precision Average Recall

PFDNN 0.920 0.825
RF 0.658 0.755
PFS 0.710 0.510

World Wide Web (2019) 22:2379–24052400



than that of RF for predicting whether the collective action could occur in the next 22 days. It
also shows that the accuracy would decrease gradually with the increase of the prediction
period. Therefore, theremight be merely a slight difference between a potential collective action
and a regular activity at an early stage. However, they could show different early premonitions
for the collective actions so that they could be detected by building early premonitions.

It should be noted that there are limitations to our predication framework. As the training set is
built based on two kinds of data sources including the early premonitions collected from social media
and the labels collected frommainstreammedia, the prediction framework cannot work if either kind
of the data sources is not accessible. Besides, the two kinds of data sources need to contain time
information because time correction is required for the early premonitions and the labels.

To guarantee the robustness of the DNN model in real-world applications, we apply multi-
granularity testing criteria proposed in the work of [34] to evaluate the model. Based on these
testing criteria, we can speculate that there may be some defects in the model when all input
data are noises. However, this is only an extreme situation in reality. For most real-word
applications, not all input data are noises and we can remove the noise data beforehand.
Therefore, the impact of the defects can be reduced. Thus, it indicates that the robustness of the
model is acceptable.

7 Related work

This study aims to predict the potential collective actions using emotional contagion and deep
neural network. In this section, we will introduce related work on collective actions, emotional
contagion and deep learning.

Study on Collective Actions Nathan Kallus [32] used random forest algorithm to determine
whether an event can become a collective action based on the tweets and mainstream news on
Arab Spring. This research analyzed collective actions by considering the amount of tweets
and violence-related words in each tweet. Peng Lu studied on predicting the peak of people
who participants in collective action [35]. Suhas Ranganath et al. studied how to predict

Figure 11 The accuracy of predicting collective actions every single day in the next 22 days
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whether the user’s next post would be a declaration of protest by analyzing his past status
messages and the messages interacting with him over time [36]. Sandra González-Bailón et al.
evaluated the theoretical claims about political protests by examining the cohesion of the
networks using community detection methods [37]. Rupinder P. Khandpur et al. proposed an
integrated situational assessment for airport related threats from news and social media to
estimate if one airport is under higher threat than others [38]. Sathappan Muthiah et al.
developed a protest forecasting system that can identify what to look for using a combination
of key phrase, reason about location occurrences in extracted results using probabilistic soft
logic, and resolve future tense mentions using time normalization [15].

Emotional contagion Collective emotions are at the heart of any society and become much
more evident in gatherings, crowds, or responses to social events. As we know, negative emotions
can easily result in demonstrations or even collective actions which can seriously affect the social
security. Thus, the research on collective emotion is of great practical significance. Weibo (the
Chinese microblog) generates more than 1000 posts every second. These posts not only convey
facts, but also reflect the emotional states of the authors which can help understand user behaviors.
The work in [39] built a system called MoodLens which is the first system developed for
sentiment analysis of posts in Weibo. In MoodLens, 95 emoticons are mapped into the four
categories of sentiments (including angry, disgusting, joyful, and sad) which serve as the class
labels of posts. The authors in [40] proposed a theory that explains collective emotions from three
broad perspectives: face-to-face encounters, shared culture and knowledge, and identificationwith
a social collective. Furthermore, they stated that cognitive and affective states can be infectious
under certain circumstances and spread through contagion. The work in [31] theoretically
proposed a method for predicting the tendency and final state of collective opinion. The
experiment showed that the collective opinion of the steady state may deviate to either the positive
or negative direction based on the initial biases of the opinion leaders. The study further analyzed
the correlation coefficient of the linear relationship between the collective opinion and the initial
bias based on experimental as well as theoretical analysis. The authors in [41] proposed some
interesting findings such as the phenomenon of emotion synchronization between friends in
online social networks which reveals that emotion can be spread among users. Based on such
findings, it presented a dynamic evolution model of collective emotions taking into account self-
evolving as well as mutually evolving process. The study in [42] analyzed the dynamics of
emotional contagion using Twitter. It showed that on average, a negative post has 4.34% more
negative content than baseline, while positive posts has an average 4.50%more positive contents.
Based on experimental evidence for massive-scale contagion via social networks, researchers also
found that emotions expressed by others on Facebook influence our own emotions [43]. This
work also suggested that, in contrast to prevailing assumptions, in-person interactions and
nonverbal cues are not strictly necessary for emotional contagion, and that the observation of
others’ positive experience constitutes a positive experience for people.

Deep Learning Pascal Vincent et al. explored a straightforward variation on the stacking of
ordinary autoencoders called denoising autoencoders which were trained locally to denoise
corrupted versions of their inputs and could learn useful representations in a deep network [44].
Y LeCun et al. proposed LeNet-5 model which marked the formation of convolutional neural
network [45]. Y LeCun, Yoshua Bengio and Geoffrey Hinton summarized the kernel knowl-
edge of deep learning and explained the theory of CNN [46]. G. E. Hinton et al. proposed the
method that it could train the neural network layer-by-layer to reduce the training complexity,
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which gave a big push for the development of CNN and deep learning [47]. Alex Krizhevsky
et al. used deep convolutional neural networks consisted of five convolutional layers (including
max-pooling layers and two globally connected layers with a final 1000-way softmax) to study
the classification problems on ImageNet [48]. In recent researches, face verification with CNN
has been a very import domain. Sun Y et al. proposed to learn a set of high-level feature
representations through deep convolutional networks (referred to as Deep hidden IDentity
features (DeepID)) for multi-class face identification tasks [49]. In 2016, AlphaGo shocked
the world by beating humans in playing the Game of Go. The research of AlphaGo also
involved CNN which was introduced by D Silver et al. in the Nature Magazine [50].

8 Conclusions

Collective actions are usually planned, organized, and announced in advance and may threaten
people’s safety and the social stability. Therefore, it is very important to predict the occurrence
and the date for collective actions in order to send out early warnings to decision-makers. For
such a purpose, this paper proposed the prediction framework to predict whether a regular
social activity can evolve into a collective action and estimate its date of occurrence using early
premonitions. The framework is mainly comprised of two parts: the emotional contagion
prediction and the DNN prediction. Emotional contagion prediction is used to forecast whether
the whole emotional state will be negative or not. If not, we can conclude that the activity will
not evolve into a collective action. Otherwise, we implement the DNN prediction framework.
Our framework formulates the prediction problem as a binary classification problem where
regular activity and collective action are the two output classes of the deep neural network. The
framework can retrieve early premonitions from social media data and employ mainstream
media data to label early premonitions during the training process of the DNN. Specifically,
our experimental results showed that the DNN consisting of 11 layers with the node distribu-
tion [30, 200, 20, 20, 50, 80, 900, 60, 30, 18, 2] achieved the best performance.
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